图论--(最短路,最小生成树)的一些水题

最近写kuangbin专题,记录一下吧。

目录

POJ-1511-Invitation Cards(建两次图,裸Dijkstr)

POJ-2502-Subway(最短路)

POJ-1062-昂贵的聘礼(枚举最短路,n次)

POJ-1847-Tram(读完题之后,裸Dijkstra,水题)

LightOJ-1074-Extended Traffic(SPFA-负环)


POJ-1511-Invitation Cards(建两次图,裸Dijkstr)

题目链接:http://poj.org/problem?id=1511

题目大意:1~n个点,n个人,然后给你一个有向图,问所有人从1出发,每要求每个点都有一个人,然后人们再回到1点,问最小花费是多少,

思路:之前似乎做过类似的,正向建一次,Dijkstr,反向建一次,Dijkstr,输出ans,注意这里提上说的是输入的数是int,不排除计算的时候可能到ll,所以变量用ll

AC:woc!突然发现我这个代码使用优先队列的时候没有确定优先级??这都能过??算了,当作没看见吧,下次注意一点

//#pragma comment(linker, "/STACK:1024000000,1024000000") 
 
#include<stdio.h>
#include<string.h>  
#include<math.h>  
  
#include<map>   
//#include<set>
#include<deque>  
#include<queue>  
#include<stack>  
#include<bitset> 
#include<string>  
#include<fstream>
#include<iostream>  
#include<algorithm>  
using namespace std;  
 
#define ll long long  
#define Pair pair<int,ll>
//#define max(a,b) (a)>(b)?(a):(b)
//#define min(a,b) (a)<(b)?(a):(b) 
#define clean(a,b) memset(a,b,sizeof(a))// ?? 
//std::ios::sync_with_stdio(false);
const int MAXN=1e6+10;
const int INF32=0x3f3f3f3f;
const ll INF64=0x3f3f3f3f3f3f3f3f;
const ll mod=1e9+7;
const double PI=acos(-1.0); 

struct node{
	ll v,val,nxt;
	node(ll _v=0,ll _val=0,ll _nxt=0){
		v=_v;val=_val;nxt=_nxt;
	}
}edge[MAXN<<1];
int head[MAXN],ecnt;
ll a[MAXN],b[MAXN],val[MAXN];
ll dis[MAXN];
int n,m;

void intt(){
	clean(head,-1);
	ecnt=0;
}
void add(ll u,ll v,ll val){
	edge[ecnt]=node(v,val,head[u]);
	head[u]=ecnt++;
}
void Dijkstr(){
	clean(dis,INF64);dis[1]=0;
	priority_queue<Pair> que;while(que.size())	que.pop();
	que.push({1,0});
	while(que.size()){
		Pair e=que.top();que.pop();
		//printf(" %d_%d  ",e.first,e.second);
//		vis[e.first]=1;
		for(int i=head[e.first];i+1;i=edge[i].nxt){
			int temp=edge[i].v;
			if(dis[temp]>dis[e.first]+edge[i].val){
				dis[temp]=dis[e.first]+edge[i].val;
				que.push({temp,dis[temp]});
			}
		}
	}
}
int main(){
	int T;scanf("%d",&T);
	while(T--){
		intt();
		scanf("%d%d",&n,&m);
		for(int i=1;i<=m;++i){
			scanf("%lld%lld%lld",&a[i],&b[i],&val[i]);
			add(a[i],b[i],val[i]);
		}Dijkstr();ll ans=0;
		for(int i=1;i<=n;++i){
			ans+=dis[i];//printf("%d_:_%d  ",i,dis[i]);
		}intt();//printf("\n");
		for(int i=1;i<=m;++i){
			add(b[i],a[i],val[i]);
		}Dijkstr();
		for(int i=1;i<=n;++i){
			ans+=dis[i];//printf("%d_:_%d  ",i,dis[i]);
		}printf("%lld\n",ans);
	}
}
 
/*

*/

POJ-2502-Subway(最短路)

题目链接:http://poj.org/problem?id=2502

题目大意:给出起点和终点,输入一些地铁的站点,每条地铁线以(-1,-1)结尾。人能选择走路||坐地铁,速度分别为:10Km/h和40Km/h;问从起点到终点所用的最短时间。

思路:建图麻烦,但是建好图之后就是裸的Dijkstra了。

ACCode:

//#pragma comment(linker, "/STACK:1024000000,1024000000")
  
#include<stdio.h>
#include<string.h> 
#include<math.h> 
   
#include<map>  
//#include<set>
#include<deque> 
#include<queue> 
#include<stack> 
#include<bitset>
#include<string> 
#include<fstream>
#include<iostream> 
#include<algorithm> 
using namespace std; 
  
#define ll long long 
#define Pair pair<int,int>
//#define max(a,b) (a)>(b)?(a):(b)
//#define min(a,b) (a)<(b)?(a):(b)
#define clean(a,b) memset(a,b,sizeof(a))// 水印
//std::ios::sync_with_stdio(false);
//  register
const int MAXN=2e2+10;
const int INF32=0x3f3f3f3f;
const ll INF64=0x3f3f3f3f3f3f3f3f;
const ll mod=1e9+7;
const double PI=acos(-1.0);

struct Point{
	double x,y;int Line;
	Point(double _x=-1,double _y=-1,int _Line=-1){
		x=_x;y=_y;Line=_Line;
	}
}s,t,Dots[MAXN];
double Dis[MAXN],Mp[MAXN][MAXN];
int Vis[MAXN];
int n,m;

void Debug(){
	for(int i=0;i<=n;++i){
		printf("(%lf,%lf,%d) - ",Dots[i].x,Dots[i].y,Dots[i].Line);
	}printf("\n");
	for(int i=0;i<=n;++i){
		for(int j=0;j<=n;++j){
			printf("%18lf ",Mp[i][j]);
		}printf("\n");
	}printf("\n");
}
void intt(){
	for(int i=0;i<MAXN;++i){
		for(int j=0;j<MAXN;++j){
			Mp[i][j]=999999999;
		}Dis[i]=999999999;Vis[i]=0;
	}
}
void Dijkstra(){
	Dis[0]=0;
	for(int i=0;i<=n;++i){
		int can=-1;double minn=999999999;
		for(int j=0;j<=n;++j){
			if(Vis[j]==0&&Dis[j]<minn){
				can=j;minn=Dis[j];
			}
		}Vis[can]=1;
		for(int j=0;j<=n;++j){
			if(Vis[j]==0&&Dis[j]>Mp[can][j]+Dis[can]){
				Dis[j]=Mp[can][j]+Dis[can];
			}
		}
	}
}
int main(){
	intt();
	scanf("%lf%lf%lf%lf",&s.x,&s.y,&t.x,&t.y);
	Dots[0]=Point(s.x,s.y,0);
	Point a,b;int ecnt=1,kind=1;
	while(~scanf("%lf%lf",&a.x,&a.y)){
		if(a.x==-1&&a.y==-1){
			kind++;
		}
		else Dots[ecnt++]=Point(a.x,a.y,kind);
	}n=ecnt;Dots[n]=Point(t.x,t.y,kind);
	for(int i=0;i<=n;++i){
		for(int j=0;j<=n;++j){
			if(Dots[i].Line==Dots[j].Line&&abs(i-j)==1){
				double dis=sqrt((Dots[i].x-Dots[j].x)*(Dots[i].x-Dots[j].x)+(Dots[i].y-Dots[j].y)*(Dots[i].y-Dots[j].y));
				Mp[i][j]=Mp[j][i]=(dis*3.0)/2000.0;
			}
			else{
				double dis=sqrt((Dots[i].x-Dots[j].x)*(Dots[i].x-Dots[j].x)+(Dots[i].y-Dots[j].y)*(Dots[i].y-Dots[j].y));
				Mp[i][j]=Mp[j][i]=(dis*6.0)/1000.0;
			}
		}
	}//Debug();
	Dijkstra();
	printf("%.0f\n",Dis[n]);
}

POJ-1062-昂贵的聘礼(枚举最短路,n次)

题目链接:http://poj.org/problem?id=1062

题目大意:中文题,读题就好。

思路:这道题好迷啊,题上说的地位限制是交换序列中的所有人之间的地位相差不能超过m,跑了n次Dijkstra才AC,之前一直只跑一遍,都快写成BFS了….WA了一页(大哭..

ACCode:

//#pragma comment(linker, "/STACK:1024000000,1024000000")
  
#include<stdio.h>
#include<string.h> 
#include<math.h> 
   
#include<map>  
#include<set>
#include<deque> 
#include<queue> 
#include<stack> 
#include<bitset>
#include<string> 
#include<fstream>
#include<iostream> 
#include<algorithm> 
using namespace std; 
  
#define ll long long 
#define Pair pair<int,int>//,pair<int,int> >
//#define max(a,b) (a)>(b)?(a):(b)
//#define min(a,b) (a)<(b)?(a):(b)
#define clean(a,b) memset(a,b,sizeof(a))// 水印
//std::ios::sync_with_stdio(false);
//  register
const int MAXN=3e2+10;
const int INF32=0x3f3f3f3f;
const ll INF64=0x3f3f3f3f3f3f3f3f;
const ll mod=1e9+7;
const double PI=acos(-1.0);

int Mp[MAXN][MAXN];
int Dis[MAXN],Vis[MAXN],Status[MAXN];
int n,m,str,ed;

struct Cmp{
	bool operator ()(const Pair &a,const Pair &b){
		return a.second>b.second;
	}
};
void Dijkstra(int minn){
	if(minn+m<Status[1]) return ;
	clean(Dis,INF32);Dis[str]=0;
	clean(Vis,0);
	priority_queue<Pair,vector<Pair>,Cmp> que;
	que.push(make_pair(str,0));
	//que.push({str,{0,INF32}});
	int ans=INF32;
	while(que.size()){
		Pair u=que.top();que.pop();
//		cout<<u.first<<" "<<u.second<<" "<<minn<<" -> ";
		if(Vis[u.first]) continue;
		Vis[u.first]=1;
		for(int i=1;i<=n;++i){
			if(Vis[i]==0&&Dis[i]>Mp[u.first][i]+Dis[u.first]
			&&Status[i]<=minn+m&&Status[i]>=minn){
				Dis[i]=Mp[u.first][i]+Dis[u.first];
				que.push(make_pair(i,Dis[i]));
			}
		}//cout<<endl;
	}
}
int main(){
	clean(Mp,INF32);str=210;ed=1;
	clean(Vis,0);
	scanf("%d%d",&m,&n);
	int val,status,T,a,b;
	for(int i=1;i<=n;++i){
		scanf("%d%d%d",&val,&status,&T);
		Mp[str][i]=val;Status[i]=status;
		for(int j=1;j<=T;++j){
			scanf("%d%d",&a,&val);
			Mp[a][i]=val;
		}
	}int ans=INF32;
	for(int i=1;i<=n;++i){
		Dijkstra(Status[i]);
//		for(int i=1;i<=n;++i){
//			cout<<Dis[i]<<" ";
//		}cout<<endl;
		ans=min(ans,Dis[1]);
	}printf("%d\n",ans);
}
/*

*/

POJ-1847-Tram(读完题之后,裸Dijkstra,水题)

题目链接:http://poj.org/problem?id=1847

题目大意:给出n个路口,每个路口能到其他K个路口,能到的第一个路口为默认方向。问从s到t最少变换几次方向。

思路:存图存成有向图,然后直接一个Dijkstra即可。

ACCode:

// luogu-judger-enable-o2
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<stdlib.h>
#include<string.h> 
#include<stdio.h>
#include<math.h> 
#include<time.h>

#include<map>  
#include<set>
#include<deque> 
#include<queue> 
#include<stack> 
#include<bitset>
#include<string> 
#include<fstream>
#include<iostream> 
#include<algorithm> 
using namespace std; 
  
#define ll long long 
#define Pair pair<int,int>
//#define max(a,b) (a)>(b)?(a):(b)
//#define min(a,b) (a)<(b)?(a):(b)
#define clean(a,b) memset(a,b,sizeof(a))// 水印
//std::ios::sync_with_stdio(false);
//  register
const int MAXN=2e2+10;
const int INF32=0x3f3f3f3f;
const ll INF64=0x3f3f3f3f3f3f3f3f;
const int MOD=998244353;
const double EPS=1.0e-12;
const double PI=acos(-1.0);

int Mp[MAXN][MAXN];
int Dis[MAXN],Vis[MAXN];
int n;

struct Cmp{
	bool operator ()(const Pair &a,const Pair &b){
		return a.second>b.second;
	}
};
void Dijkstra(int op,int ed){
	clean(Dis,INF32);Dis[op]=0;
	clean(Vis,0);
	priority_queue<Pair,vector<Pair>,Cmp> que;que.push({op,0});
	while(que.size()){
		Pair u=que.top();que.pop();
		if(Vis[u.first]) continue;
		Vis[u.first]=1;
		for(int i=1;i<=n;++i){
			if(Vis[i]==0&&Dis[i]>Dis[u.first]+Mp[u.first][i]){
				Dis[i]=Dis[u.first]+Mp[u.first][i];
				que.push({i,Dis[i]});
			}
		}
	}
}
int main(){
	clean(Mp,INF32);
	int op,ed;scanf("%d%d%d",&n,&op,&ed);
	int k,target;
	for(int i=1;i<=n;++i){
		scanf("%d",&k);
		for(int j=1;j<=k;++j){
			scanf("%d",&target);
			if(j==1) Mp[i][target]=0;
			else Mp[i][target]=1;
		}
	}Dijkstra(op,ed);
	printf("%d\n",Dis[ed]==INF32?-1:Dis[ed]);
}
/*

*/

LightOJ-1074-Extended Traffic(SPFA-负环)

题目链接:http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1074

题目大意:给出每个城市的拥堵程度,m条单向路,每条道路的权值就是(end-start)^3。然后q次查询,每次找出1到dest的最小的权值的道路,如果这个城市没法到达||权值之和<3那么就输出"?"否则输出权值。

思路:简单的一道最短路,可能存在负环,所以SPFA判断,存在负环的话,周围所有能够连接到的点都可以是-INF,所以以负环点为中心再次DFS标记能直接相连的点。最后输出的时候判断一下是否在负环中即可。(一开始数组存图,挂了,调不出来,后来向前星存图,nxt和val写反了,找了半天bug..TAT)

ACCode:

//#pragma comment(linker, "/STACK:1024000000,1024000000")
  
#include<stdio.h>
#include<string.h> 
#include<math.h> 
   
#include<map>  
#include<set>
#include<deque> 
#include<queue> 
#include<stack> 
#include<bitset>
#include<string> 
#include<fstream>
#include<iostream> 
#include<algorithm> 
using namespace std; 
  
#define ll long long 
#define Pair pair<int,ll>
//#define max(a,b) (a)>(b)?(a):(b)
//#define min(a,b) (a)<(b)?(a):(b)
#define clean(a,b) memset(a,b,sizeof(a))
//std::ios::sync_with_stdio(false);
//  register
const int MAXN=2e2+10;
const int INF32=0x3f3f3f3f;
const ll INF64=0x3f3f3f3f3f3f3f3f;
const ll mod=1e9+7;
const double EPS=1.0e-8;
const double PI=acos(-1.0);

struct node{
	int v,nxt;ll w;
	node(int _v=0,int _w=0,ll _nxt=0){
		v=_v;w=_w;nxt=_nxt;
	}
}Edge[MAXN*MAXN];
int head[MAXN],ecnt;
ll Busyness[MAXN];
ll Dis[MAXN],Sum[MAXN];
int Vis[MAXN],Cir[MAXN];
int Stk[MAXN*MAXN],Top;
int n,Flag;

void Add(int u,int v,ll w){
	Edge[ecnt]=node(v,w*w*w,head[u]);
	head[u]=ecnt++;
}
void DFS(int u){
	Cir[u]=1;
	for(int i=head[u];i+1;i=Edge[i].nxt){
		if(Cir[Edge[i].v]==0){
			DFS(Edge[i].v);
		}
	}
}
void DFS_SPFA(){
	clean(Dis,INF64);Dis[1]=0;
	clean(Vis,0);Vis[1]=1;
	clean(Sum,0);Sum[1]=1;
	clean(Cir,0);
	Top=0;Stk[Top++]=1;
	while(Top){
		int u=Stk[--Top];Vis[u]=0;
		if(Sum[u]>n||Cir[u]==1) continue;
		for(int i=head[u];i+1;i=Edge[i].nxt){
			int temp=Edge[i].v;//cout<<"temp:"<<temp<<endl;
			if(Dis[temp]>Dis[u]+Edge[i].w){
				Dis[temp]=Dis[u]+Edge[i].w;
				if(Vis[temp]==0){
					Vis[temp]=1;Sum[temp]++;
					Stk[Top++]=temp;
					if(Sum[temp]>n){
						DFS(temp);
					}
				}
			}
		}
	}
}
void Debug(){
//	for(int i=1;i<=n;++i) cout<<"head i:"<<head[i]<<endl;
	for(int i=1;i<=n;++i){
		cout<<i<<": ";
		for(int j=head[i];j+1;j=Edge[j].nxt){
			cout<<Edge[j].v<<" ";
		}cout<<endl;
	}
}
int main(){
	int Case=1,T;scanf("%d",&T);
	while(T--){
		clean(head,-1);ecnt=0;
		scanf("%d",&n);
		for(int i=1;i<=n;++i){
			scanf("%lld",&Busyness[i]);
		}int m,a,b;scanf("%d",&m);
//		for(int i=1;i<=n;++i) cout<<"head i:"<<head[i]<<endl;
		for(int i=1;i<=m;++i){
			scanf("%d%d",&a,&b);
			Add(a,b,Busyness[b]-Busyness[a]);
			//Mp[a][b]=(Busyness[b]-Busyness[a])*(Busyness[b]-Busyness[a])*(Busyness[b]-Busyness[a]);
		}//Debug();
		int Q;scanf("%d",&Q);DFS_SPFA();
		printf("Case %d:\n",Case++);int dest;
		while(Q--){
			scanf("%d",&dest);
			if(Dis[dest]==INF64||Dis[dest]<3||Cir[dest]) printf("?\n");
			else printf("%lld\n",Dis[dest]);
		}
	}
}

 

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:技术黑板 设计师:CSDN官方博客 返回首页
评论 1

打赏作者

永远鲜红の幼月

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值