权值线段树学习(模板+例题)

之前写一道题的时候,看到了一个数据结构叫做权值线段树,跟普通的线段树不太一样,一直没有仔细看,上课无聊,随手推了推,画了几张图,感觉容易多了。

权值线段树

普通线段树基本上会点数据结构的人都知道了,维护区间的一些属性(最值,区间和什么的)。权值线段树虽然挂了一个权值的名字,其实本职工作仍然离不开对区间的维护,只不过他维护的是 “权值”。

权值线段树作用

权值线段树的作用就是查找一个区间的第k大的值。

原理

一开始我还有点迷,怎么样才能找到区间内第k大的值呢?自己还画了半天(妄想自己推出权值线段树,石乐志)。

后来看看别人的原理(说的都是什么啊,要么高深的很,要么直接就是代码。。)结合自己的脑补,搞出了个个人认为就是权值线段树的东西(目前为止仍是个人认为的,有大佬觉得不对的话,请务必留言指出,十分感谢!)

下面就开始口胡了:

其实很简单,我们每个节点的位置表示的是元素的值,然后节点中的元素表示的是元素的数量。如图:

大概就是这样了。是不是感觉有点头绪了?

接下来修改一下区间:例如,向数组中插入数字3和5

好了,现在线段树修改成这个样子了。看到这,是不是对权值线段树有一个基本的了解了。

那么查询3~7区间中第二大的数:就是3了。

步骤就是蓝色的步骤了:

好了,这个就是基本的思路了(口胡完毕),现在知道思路后,实现很显然就好实现了。

代码实现就不专门写了,还是线段树的那个板子。

然后就是试试这个算法了,找一些OJ测试一下

逆序数:

这玩意还能用来求逆序数!!牛逼牛逼!到现在我倒觉得跟树状数组差不多了23333.

HDU-1394-Minimum Inversion Number(求最小逆序数)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394

题目大意:如题

思路:很明显,人尽皆知**题。

ACCode:

// luogu-judger-enable-o2
//#pragma comment(linker, "/STACK:1024000000,1024000000")
 
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<time.h>
 
#include<map>
#include<set>
#include<deque>
#include<queue>
#include<stack>
#include<bitset>
#include<string>
#include<fstream>
#include<iostream>
#include<algorithm>
using namespace std;
 
#define ll long long
#define Pair pair<ll,int>
//#define max(a,b) (a)>(b)?(a):(b)
//#define min(a,b) (a)<(b)?(a):(b)
#define clean(a,b) memset(a,b,sizeof(a))// 水印
//std::ios::sync_with_stdio(false);
//  register
const int MAXN=1e4+10;
const int INF32=0x3f3f3f3f;
const ll INF64=0x3f3f3f3f3f3f3f3f;
const ll mod=192600817;
const double EPS=1.0e-8;
const double PI=acos(-1.0);

int Tree[MAXN<<2];
int a[MAXN];
int n;

void Update(int l,int r,int x,int rt){//修改一个点 
	if(l==r){
		Tree[rt]++;
		return ;
	}int mid=(l+r)>>1;
	if(x<=mid) Update(l,mid,x,rt<<1);
	else Update(mid+1,r,x,rt<<1|1);
	Tree[rt]=Tree[rt<<1]+Tree[rt<<1|1];
}
int Query(int ql,int qr,int l,int r,int rt){
	if(l>=ql&&r<=qr){
		return Tree[rt];
	}int mid=(l+r)>>1;
	int ans=0;
	if(ql<=mid) ans+=Query(ql,qr,l,mid,rt<<1);
	if(qr>mid) ans+=Query(ql,qr,mid+1,r,rt<<1|1);
	return ans;
}
int main(){
	while(~scanf("%d",&n)){
		clean(Tree,0);
		int x,ans=0;
		for(int i=1;i<=n;++i){
			scanf("%d",&a[i]);
			ans+=Query(a[i]+1,n,1,n,1);
//			cout<<ans<<" ";
			Update(1,n,a[i]+1,1);
		}int res=ans;
		for(int i=1;i<=n;++i){
			res-=Query(1,a[i]+1,1,n,1)-1;
			res+=Query(a[i]+1,n,1,n,1)-1;
//			cout<<res<<" ";
			ans=min(ans,res);
		}printf("%d\n",ans);
	}
}
/*

*/

CF#510 Div.2 D. Petya and Array(前缀和,逆序数)

题目链接:http://codeforces.com/contest/1042/problem/D

题目大意:区间中选择一些连续的区间,满足 \sum_{i=l}^{r}a[i]<t,然后看有多少个这样的区间。

思路:满足条件sum[r]-sum[l-1]<t。

ACCode:

// luogu-judger-enable-o2
//#pragma comment(linker, "/STACK:1024000000,1024000000")
 
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<time.h>
 
#include<map>
#include<set>
#include<deque>
#include<queue>
#include<stack>
#include<bitset>
#include<string>
#include<fstream>
#include<iostream>
#include<algorithm>
using namespace std;
 
#define ll long long
#define Pair pair<ll,int>
//#define max(a,b) (a)>(b)?(a):(b)
//#define min(a,b) (a)<(b)?(a):(b)
#define clean(a,b) memset(a,b,sizeof(a))// 水印
//std::ios::sync_with_stdio(false);
//  register
const int MAXN=2e5+10;
const int INF32=0x3f3f3f3f;
const ll INF64=0x3f3f3f3f3f3f3f3f;
const ll mod=1e9+7;
const double EPS=1.0e-8;
const double PI=acos(-1.0);

ll Tree[MAXN<<2];
ll a[MAXN],sum[MAXN];
ll n,t;

int get_r(ll res){
	int l=1,r=n,mid;
	while(l<=r){//find the last r to sum[l-1]>sum[r]-t  => res>sum[r]
		mid=(l+r)>>1;
		if(res>sum[mid]) l=mid+1;
		else r=mid-1;
	}return r;
}
int get_l(ll res){
	int l=1,r=n,mid;
	while(l<=r){
		mid=(l+r)>>1;
		if(res==sum[mid]) return mid;
		else if(res>sum[mid]) l=mid+1;
		else r=mid-1;
	}
}
void Update(int l,int r,int x,int oper,int rt){//修改一个点 
	if(l==r){
		Tree[rt]+=oper;
		return ;
	}int mid=(l+r)>>1;
	if(x<=mid) Update(l,mid,x,oper,rt<<1);
	else Update(mid+1,r,x,oper,rt<<1|1);
	Tree[rt]=Tree[rt<<1]+Tree[rt<<1|1];
}
int Query(int ql,int qr,int l,int r,int rt){
	if(qr==0) return 0;
	if(l>=ql&&r<=qr){
		return Tree[rt];
	}int mid=(l+r)>>1;
	int ans=0;
	if(ql<=mid) ans+=Query(ql,qr,l,mid,rt<<1);
	if(qr>mid) ans+=Query(ql,qr,mid+1,r,rt<<1|1);
	return ans;
}
int main(){
	while(~scanf("%lld%lld",&n,&t)){
		clean(Tree,0);
		for(int i=1;i<=n;++i){
			scanf("%lld",&a[i]);
			sum[i]=sum[i-1]+a[i];
		}sort(sum+1,sum+1+n);
		for(int i=1;i<=n;++i){
			sum[i]=sum[i]-t;
		}sort(sum+1,sum+1+n);
		for(int i=1;i<=n;++i){
			Update(1,n,i,1,1);
		}ll ans=0,res=0;
		for(int i=1;i<=n;++i){
			int r=get_r(res);
//			cout<<r<<" : ";
			ans+=Query(1,r,1,n,1);
//			cout<<ans<<" ";
			res+=a[i];
			int l=get_l(res-t);
			Update(1,n,l,-1,1);
		}printf("%lld\n",ans);
	}
}
/*

*/

 

<think>好的,我现在需要处理用户关于Codeforces题型总结和解题技巧的请求。首先,回顾之前的对话历史,用户之前询问了ACM学习路线,我给出了分阶段的学习计划和资源推荐。现在用户转向Codeforces的具体题型和解题技巧,这表明他们可能正在准备竞赛,需要更针对性的策略。 首先,我需要确定用户的需求。用户想要的是Codeforces平台上各类题型的分类总结以及对应的解题思路。他们可能希望了解常见的题型类别,每个类别的特点,以及解决这些题目的常用技巧和算法。此外,用户可能还希望得到一些具体的例题和代码示例,以便更好地理解和应用这些技巧。 接下来,我需要参考用户提供的引用内容。引用[1]中提到了算法基础,包括复杂度分析、递归、分治、贪心、排序、前缀和、差分、二分、三分、倍增等。这些内容在Codeforces题目中确实常见,因此需要将这些算法和技巧与具体的题型对应起来,进行分类归纳。 我需要确保回答结构清晰,分点列出各个题型类别,每个类别下包括题型特点、解题技巧、例题及解析。同时,按照用户之前的要求,使用中文回答,行内数学公式用$...$,独立公式用$$...$$,并正确使用LaTeX语法。此外,需要生成相关问题,并在适当的地方添加引用标识。 在整理题型时,要覆盖Codeforces常见的题目类型,如贪心、动态规划、图论、数论、数据结构、构造题、二分/三分、字符串处理、计算几何等。每个类别需要简要说明其特点,解题时的常用方法,并举出具体的题目例子,最好附上题目编号,方便用户查找练习。 同时,要注意结合用户之前的学习路线,推荐相关的资源,比如《算法竞赛入门经典》中的例题,或者在线平台如Codeforces本身的训练建议。此外,可能需要提到一些实战技巧,比如如何快速识别题型、如何优化代码等。 需要避免的是过于泛泛而谈,要尽量具体,给出实际可操作的技巧。例如,在贪心题中,可以提到邻项交换法或后悔法的具体应用;在动态规划中,强调状态设计和转移方程的优化方法。对于每个技巧,最好能对应一个例题,说明如何应用该技巧解决问题。 另外,考虑到用户可能需要代码示例,可以在适当的位置插入简短的代码片段,如动态规划或二分的典型实现,但需注意代码的准确性和简洁性,避免冗长。 最后,生成的相关问题需要围绕用户可能的后续疑问展开,比如如何提高刷题效率,特定题型的深入分析方法,或者推荐Codeforces上的训练计划等。这些问题应自然延伸当前主题,帮助用户进一步探索。 现在,需要检查是否覆盖了用户的所有需求,是否结构清晰,是否引用了之前的资源(如引用[^1]),并确保所有数学公式的正确格式。同时,确保回答真实可靠,基于常见的竞赛知识和经验,避免错误的信息。</think>### Codeforces题型总结与解题技巧分类指南 #### 一、高频核心题型分类 1. **贪心算法** - **题型特点**:决策序列中局部最优选择可推导全局最优解,常见于区间调度、资源分配问题 - **解题技巧**: - 邻项交换法(证明交换后更优):如$n$个数的最拼接问题(CF 1385B) - 后悔法(优先队列维护候选集):CF 1526C(药水选择) ```cpp // 后悔法模板 priority_queue<int, vector<int>, greater<int>> pq; for(int x : arr){ sum += x; pq.push(x); while(sum < 0){ sum -= pq.top(); pq.pop(); } } ``` - 时间轴处理:CF 1481C(栅栏涂色时序处理)[^1] 2. **动态规划** - **状态设计模式**: - 线性DP:$dp[i]$表示前$i$个元素的最优解(CF 474D 花朵问题) - 状态压缩DP:用位运算表示集合状态(CF 580D 美食家问题) - 树形DP:结合DFS遍历处理子树关系(CF 1092F 树权值分配) - **优化技巧**: - 斜率优化:维护凸包降低时间复杂度至$O(n)$(CF 319C 木材切割) - 滚动数组:空间复杂度优化至$O(1)$(CF 1114D 颜色填充) 3. **图论算法** - **高频考点**: | 算法类型 | 应用场景 | 例题 | |----------------|-----------------------------------|----------------| | 拓扑排序 | 任务调度/依赖解析 | CF 1385E | | 强连通分量 | 缩点处理环结构 | CF 427C | | 网络流 | 二分图匹配/资源分配 | CF 1139E | | 最短路变形 | 分层图/边权特殊处理 | CF 1473E | 4. **数论问题** - **核心工具**: - 欧拉定理:处理模指数运算(CF 615D 质因子乘积) - 中国剩余定理:同余方程组求解(CF 687B) - 莫比乌斯反演:统计互质对数量(CF 547C) - **特殊技巧**: $$ \sum_{d|n}\mu(d) = \begin{cases} 1 & n=1 \\ 0 & n>1 \end{cases} $$ 用于快速计算GCD相关问题 #### 二、特征题型专项突破 1. **构造题(Constructive Algorithms)** - **识别特征**:输出满足特定条件的结构而非数值结果 - **经典解法**: - 奇偶性构造:CF 1421B(矩阵路径奇偶性) - 平衡分配法:CF 1343D(调整数组使对称元素相等) - 极端值构造:CF 1375E(通过逆序操作排序数组) 2. **交互题(Interactive Problems)** - **解题框架**: ```python low, high = 1, 1e18 while low <= high: mid = (low + high) // 2 print(f"? {mid}") response = input() if response == ">=": low = mid + 1 else: high = mid - 1 print(f"! {high}") ``` - **注意事项**: - 刷新输出缓冲区(C++用`cout << endl`) - 错误处理:CF 1520F2(二进制猜数容错机制) 3. **数据结构题** - **题型矩阵**: | 数据结构 | 适用场景 | 优化技巧 | |----------------|-------------------------------|---------------------------| | 线段树 | 区间查询/更新 | 延迟标记(lazy propagation)| | 并查集 | 连通性检测 | 路径压缩+按秩合并 | | 字典树 | 前缀匹配统计 | 二进制位处理 | | 单调队列 | 滑动窗口最值 | 淘汰非最优候选 | #### 三、实战技巧体系 1. **复杂度预判法**: - 输入规模$n$与可接受时间复杂度对应表: $$ \begin{array}{c|c} n \leq 10^6 & O(n) \\ n \leq 10^5 & O(n \log n) \\ n \leq 10^4 & O(n^2) \\ n \leq 20 & O(2^n) \\ \end{array} $$ 2. **Debug技巧**: - 边界测试:$n=0,1$等极端情况 - 对拍验证:生成随机数据与暴力程序对比 - 输出中间状态:使用`cerr`输出调试信息 3. **代码模板管理**: - 建议维护以下模板库: ```text /templates ├── graph │ ├── dijkstra.cpp │ └── tarjan_scc.cpp ├── math │ ├── matrix_fastpow.cpp │ └── fft_template.cpp └── ds ├── segment_tree.cpp └── union_find.cpp ``` #### 四、经典例题解析 1. **CF 1485D - Multiples and Power Differences** - **题型**:构造题+数论 - **关键思路**: 构造矩阵元素$a_{i,j} = 720720 + (i+j)\%2 \times (a_{i,j}^4)$ 保证相邻元素差为四次方数 2. **CF 1513C - Add One** - **解法**:动态规划预处理 定义$dp[d][m]$表示数字$d$经过$m$次操作的位数 状态转移: $$ dp[d][m] = \begin{cases} 1 & m=0 \\ dp[1][m-1] + dp[0][m-1] & d=9 \\ dp[d+1][m-1] & otherwise \end{cases} $$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值