3维和3维做相乘时,保证第一维相同,后两维满足二维矩阵相乘时的行列原则(即对于后两维来说,第一个矩阵的列与第二个矩阵的行相等)
eg:两个三维矩阵,维度为【2,3,4】和【2,4,5】,这里的2是第一个维度,两个2必须相等,第一个矩阵的后两维为3×4,列数为4,第二个矩阵的后两维为4×5,行数为4,第一个的列数必须与第二的行数相等,【2,3,4】×【2,4,5】=【2,3,5】
2维与3维相乘,需满足2维的第二个维度,即列数,要与3维的第二个维度,即后两维的行数相等
eg:【3,4】×【6,4,7】=【6,3,7】
1维(行向量)与2维相加:
则1维向量按照每行去扩展,扩展至与2维相等的列数,然后逐元素相加
2维和3维相加:
则将2维扩展至3维,扩后的第一个维度与3维的第一个维度相等