TensorFlow中多维矩阵运算

3维和3维做相乘时,保证第一维相同,后两维满足二维矩阵相乘时的行列原则(即对于后两维来说,第一个矩阵的列与第二个矩阵的行相等)

eg:两个三维矩阵,维度为【2,3,4】和【2,4,5】,这里的2是第一个维度,两个2必须相等,第一个矩阵的后两维为3×4,列数为4,第二个矩阵的后两维为4×5,行数为4,第一个的列数必须与第二的行数相等,【2,3,4】×【2,4,5】=【2,3,5】

2维与3维相乘,需满足2维的第二个维度,即列数,要与3维的第二个维度,即后两维的行数相等

eg:【3,4】×【6,4,7】=【6,3,7】

1维(行向量)与2维相加:

则1维向量按照每行去扩展,扩展至与2维相等的列数,然后逐元素相加

2维和3维相加:

则将2维扩展至3维,扩后的第一个维度与3维的第一个维度相等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若初雪舞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值