Neural Networks and Deep Learnging week4 Building your Deep Neural Network: Step by Step

该实验作业的主要目的

  1. 实现深度网络的所有功能(不再是1层)(对激活函数进行修改)(个人认为更关键的地方在于dw这些参量函数关系)
  2. 在下一个实验中使用该模型进行训练

总体进程

载入文件

总体设计神经网络在动手写代码,为此你需要回顾一下神经网络的过程

  • a初始化参数,打破对称性
  • d前向传递函数(b使用什么线性回归,c使用什么激活函数)
  • e代价函数计算
  • f后向传递函数(根据你的线性回归函数和激活函数,计算偏导)得到梯度
  • g更新参数
  • 重复上述循环
  • 预测结果并得到结论

当你回顾完毕后,我们开始搭建网络

3.1 初始化参数(2层)

3.2 前向传递函数(n层)

4.1 前向传递线性回归函数  Z

4.2 前向传递激活函数  A

4.2 前向传递模块整合

5 代价函数

6.1 后向传递线性偏导 (希望你还记得计算图)

6.2 后向传递激活偏导

6.2 后向传递模块整合

6.4 更新参数

结论

在需要写代码的前面我将提示任务目标

Building your Deep Neural Network: Step by Step

Welcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!

  • In this notebook, you will implement all the functions required to build a deep neural network.
  • In the next assignment, you will use these functions to build a deep neural network for image classification.

After this assignment you will be able to:

  • Use non-linear units like ReLU to improve your model
  • Build a deeper neural network (with more than 1 hidden layer)
  • Implement an easy-to-use neural network class

Notation:

  • Superscript [l][l] denotes a quantity associated with the lthlth layer.
    • Example: a[L] is the LthLth layer activation. W[L] and b[L] are the Lth layer parameters.
  • Superscript (i) denotes a quantity associated with the ithith example.
    • Example: x(i) is the ithith training example.
  • Lowerscript ii denotes the ithith entry of a vector.
    • Example: a[l]i denotes the ithith entry of the lth layer's activations).

Let's get started!

 

Updates to Assignment 

If you were working on a previous version

  • The current notebook filename is version "4a".
  • You can find your work in the file directory as version "4".
  • To see the file directory, click on the Coursera logo at the top left of the notebook.

List of Updates

  • compute_cost unit test now includes tests for Y = 0 as well as Y = 1. This catches a possible bug before students get graded.
  • linear_backward unit test now has a more complete unit test that catches a possible bug before students get graded.
 

1 - Packages

Let's first import all the packages that you will need during this assignment.

  • numpy is the main package for scientific computing with Python.
  • matplotlib is a library to plot graphs in Python.
  • dnn_utils provides some necessary functions for this notebook.
  • testCases provides some test cases to assess the correctness of your functions
  • np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don't change the seed.
import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v4a import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward

%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

%load_ext autoreload
%autoreload 2

np.random.seed(1)

2 - Outline of the Assignment

To build your neural network, you will be implementing several "helper functions". These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:

  • Initialize the parameters for a two-layer network and for an LL-layer neural network.
  • Implement the forward propagation module (shown in purple in the figure below).
    • Complete the LINEAR part of a layer's forward propagation step (resulting in Z[l]Z[l]).
    • We give you the ACTIVATION function (relu/sigmoid).
    • Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
    • Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer LL). This gives you a new L_model_forward function.
  • Compute the loss.
  • Implement the backward propagation module (denoted in red in the figure below).
    • Complete the LINEAR part of a layer's backward propagation step.
    • We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward)
    • Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function.
    • Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function
  • Finally update the parameters.

Note that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps.

3 - Initialization

You will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to LL layers.

3.1 - 2-layer Neural Network

Exercise: Create and initialize the parameters of the 2-layer neural network.

Instructions:

  • The model's structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
  • Use random initialization for the weight matrices. Use np.random.randn(shape)*0.01 with the correct shape.
  • Use zero initialization for the biases. Use np.zeros(shape).

两层网络初始化

# GRADED FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer
    
    Returns:
    parameters -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """
    
    np.random.seed(1)
    
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h,n_x)*0.01
    b1 = np.zeros((n_h,1))
    W2 = np.random.randn(n_y,n_h)*0.01
    b2 = np.zeros((n_y,1))
    ### END CODE HERE ###
    
    assert(W1.shape == (n_h, n_x))
    assert(b1.shape == (n_h, 1))
    assert(W2.shape == (n_y, n_h))
    assert(b2.shape == (n_y, 1))
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters    
parameters = initialize_parameters(3,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

Expected output:

W1[[ 0.01624345 -0.00611756 -0.00528172] [-0.01072969 0.00865408 -0.02301539]]
b1[[ 0.] [ 0.]]
W2[[ 0.01744812 -0.00761207]]
b2[[ 0.]]

3.2 - L-layer Neural Network

The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize_parameters_deep, you should make sure that your dimensions match between each layer. Recall that n[l]n[l] is the number of units in layer ll. Thus for example if the size of our input XX is (12288,209)(12288,209) (with m=209m=209 examples) then:

 Shape of WShape of bActivationShape of Activation
Layer 1(n[1],12288)(n[1],12288)(n[1],1)(n[1],1)Z[1]=W[1]X+b[1]Z[1]=W[1]X+b[1](n[1],209)(n[1],209)
Layer 2(n[2],n[1])(n[2],n[1])(n[2],1)(n[2],1)Z[2]=W[2]A[1]+b[2]Z[2]=W[2]A[1]+b[2](n[2],209)(n[2],209)
⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮
Layer L-1(n[L−1],n[L−2])(n[L−1],n[L−2])(n[L−1],1)(n[L−1],1)Z[L−1]=W[L−1]A[L−2]+b[L−1]Z[L−1]=W[L−1]A[L−2]+b[L−1](n[L−1],209)(n[L−1],209)
Layer L(n[L],n[L−1])(n[L],n[L−1])(n[L],1)(n[L],1)Z[L]=W[L]A[L−1]+b[L]Z[L]=W[L]A[L−1]+b[L](n[L],209)(n[L],209)

Remember that when we compute WX+bWX+b in python, it carries out broadcasting. For example, if:

 

W=\begin{bmatrix} j & k &l \\ m& n &o \\ p& q& r \end{bmatrix} X=\begin{bmatrix} a & b &c \\ d& e &f \\ g& h & i \end{bmatrix} b=\begin{bmatrix} s\\ t\\ u \end{bmatrix}

Then WX+b will be:

 

WX+b=\begin{bmatrix} (ja+kd+lg)+s & (jb+ke+lh)+s & (jc+kf+li)+s\\ (ma+nd+og)+t& (mb+ne+oh)+t& (mc+nf+oi)+t\\ (pa+qd+rg)+u &(pb+qe+rh)+u & (pc+qf+ri)+u \end{bmatrix}

Exercise: Implement initialization for an L-layer Neural Network.

Instructions:

  • The model's structure is [LINEAR -> RELU] ×× (L-1) -> LINEAR -> SIGMOID. I.e., it has L−1L−1 layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
  • Use random initialization for the weight matrices. Use np.random.randn(shape) * 0.01.
  • Use zeros initialization for the biases. Use np.zeros(shape).
  • We will store n[l]n[l], the number of units in different layers, in a variable layer_dims. For example, the layer_dims for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. This means W1's shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to LL layers!
  • Here is the implementation for L=1L=1 (one layer neural network). It should inspire you to implement the general case (L-layer neural network).
      if L == 1:
          parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
          parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))

n层网络的初始化

# GRADED FUNCTION: initialize_parameters_deep

def initialize_parameters_deep(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
    
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    bl -- bias vector of shape (layer_dims[l], 1)
    """
    
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims)            # number of layers in the network

    for l in range(1, L):
        ### START CODE HERE ### (≈ 2 lines of code)
        parameters['W' + str(l)] = np.random.randn(layer_dims[l],layer_dims[l-1])*0.01
        parameters['b' + str(l)] = np.zeros((layer_dims[l],1))
        ### END CODE HERE ###
        
        assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
        assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))

        
    return parameters
parameters = initialize_parameters_deep([5,4,3])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

Expected output:

W1[[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]]
b1[[ 0.] [ 0.] [ 0.] [ 0.]]
W2[[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]]
b2[[ 0.] [ 0.] [ 0.]]

4 - Forward propagation module

4.1 - Linear Forward

Now that you have initialized your parameters, you will do the forward propagation module. You will start by implementing some basic functions that you will use later when implementing the model. You will complete three functions in this order:

  • LINEAR
  • LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.
  • [LINEAR -> RELU] ×× (L-1) -> LINEAR -> SIGMOID (whole model)

The linear forward module (vectorized over all the examples) computes the following equations:

Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]}

where A[0]=X.

Exercise: Build the linear part of forward propagation.

Reminder: The mathematical representation of this unit is Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]}. You may also find np.dot() useful. If your dimensions don't match, printing W.shape may help.

线性回归函数,相当于把神经元前半部分处理信息部分抽离出来,通过修改函数,可以更快速的修改前向传递函数

# GRADED FUNCTION: linear_forward

def linear_forward(A, W, b):
    """
    Implement the linear part of a layer's forward propagation.

    Arguments:
    A -- activations from previous layer (or input data): (size of previous layer, number of examples)
    W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
    b -- bias vector, numpy array of shape (size of the current layer, 1)

    Returns:
    Z -- the input of the activation function, also called pre-activation parameter 
    cache -- a python tuple containing "A", "W" and "b" ; stored for computing the backward pass efficiently
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    Z = np.dot(W,A)+b
    ### END CODE HERE ###
    
    assert(Z.shape == (W.shape[0], A.shape[1]))
    cache = (A, W, b)
    
    return Z, cache
A, W, b = linear_forward_test_case()

Z, linear_cache = linear_forward(A, W, b)
print("Z = " + str(Z))

Expected output:

Z[[ 3.26295337 -1.23429987]]

4.2 - Linear-Activation Forward

In this notebook, you will use two activation functions:

  • Sigmoid\sigma(Z)=\sigma(WA+b)=\frac{1}{1+e^{-(WA+b)}}. We have provided you with the sigmoid function. This function returns two items: the activation value "a" and a "cache" that contains "Z" (it's what we will feed in to the corresponding backward function). To use it you could just call:

    A, activation_cache = sigmoid(Z)
    
  • ReLU: The mathematical formula for ReLu is A=RELU(Z)=max(0,Z). We have provided you with the relu function. This function returns two items: the activation value "A" and a "cache" that contains "Z" (it's what we will feed in to the corresponding backward function). To use it you could just call:

    A, activation_cache = relu(Z)
    

For more convenience, you are going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you will implement a function that does the LINEAR forward step followed by an ACTIVATION forward step.

Exercise: Implement the forward propagation of the LINEAR->ACTIVATION layer. Mathematical relation is: A^{[l]}=g(z^{[l]})=g(W^{[l]}A^{[l-1]}+b^{[l]}) where the activation "g" can be sigmoid() or relu(). Use linear_forward() and the correct activation function.

前向传递函数,A^{[l]}=g(z^{[l]})=g(W^{[l]}A^{[l-1]}+b^{[l]}),注意我们刚刚完成了线性函数,因此这里我们的传递函数很纯粹,以后修改网络,实质上修改1线性变化过程2正则化(正如机器学习里面线性回归里面的lambda一样正则化,这将在下一门课程中,提升神经网络性能中有所体现)

将线性回归和激活函数独立对于以后修改很方便linear_forward(A, W, b),这样的话线性回归在那个模块任意变动都不会影响到激活函数

# GRADED FUNCTION: linear_activation_forward

def linear_activation_forward(A_prev, W, b, activation):
    """
    Implement the forward propagation for the LINEAR->ACTIVATION layer

    Arguments:
    A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
    W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
    b -- bias vector, numpy array of shape (size of the current layer, 1)
    activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"

    Returns:
    A -- the output of the activation function, also called the post-activation value 
    cache -- a python tuple containing "linear_cache" and "activation_cache";
             stored for computing the backward pass efficiently
    """
    
    if activation == "sigmoid":
        # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
        ### START CODE HERE ### (≈ 2 lines of code)
        Z, linear_cache = linear_forward(A_prev,W,b)
        A, activation_cache = sigmoid(Z)
        ### END CODE HERE ###
    
    elif activation == "relu":
        # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
        ### START CODE HERE ### (≈ 2 lines of code)
        Z, linear_cache = linear_forward(A_prev,W,b)
        A, activation_cache = relu(Z)
        ### END CODE HERE ###
    
    assert (A.shape == (W.shape[0], A_prev.shape[1]))
    cache = (linear_cache, activation_cache)

    return A, cache
A_prev, W, b = linear_activation_forward_test_case()

A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
print("With sigmoid: A = " + str(A))

A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
print("With ReLU: A = " + str(A))

Expected output:

With sigmoid: A[[ 0.96890023 0.11013289]]
With ReLU: A[[ 3.43896131 0. ]]

Note: In deep learning, the "[LINEAR->ACTIVATION]" computation is counted as a single layer in the neural network, not two layers.

d) L-Layer Model

For even more convenience when implementing the LL-layer Neural Net, you will need a function that replicates the previous one (linear_activation_forward with RELU) L−1L−1 times, then follows that with one linear_activation_forward with SIGMOID.

Exercise: Implement the forward propagation of the above model.

Instruction: In the code below, the variable AL will denote A[L]=σ(Z[L])=σ(W[L]A[L−1]+b[L])A[L]=σ(Z[L])=σ(W[L]A[L−1]+b[L]). (This is sometimes also called Yhat, i.e., this is Ŷ Y^.)

Tips:

  • Use the functions you had previously written
  • Use a for loop to replicate [LINEAR->RELU] (L-1) times
  • Don't forget to keep track of the caches in the "caches" list. To add a new value c to a list, you can use list.append(c).

模块化前向传递函数,我们只需要调用激活函数linear_activation_forward(A_prev, W, b, activation)

# GRADED FUNCTION: L_model_forward

def L_model_forward(X, parameters):
    """
    Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
    
    Arguments:
    X -- data, numpy array of shape (input size, number of examples)
    parameters -- output of initialize_parameters_deep()
    
    Returns:
    AL -- last post-activation value
    caches -- list of caches containing:
                every cache of linear_activation_forward() (there are L-1 of them, indexed from 0 to L-1)
    """

    caches = []
    A = X
    L = len(parameters) // 2                  # number of layers in the neural network
    
    # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
    for l in range(1, L):
        A_prev = A 
        ### START CODE HERE ### (≈ 2 lines of code)
        A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)],parameters['b'+str(l)] ,activation='relu' )
        caches.append(cache)
        ### END CODE HERE ###
    
    # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
    ### START CODE HERE ### (≈ 2 lines of code)
    AL, cache = linear_activation_forward(A, parameters['W'+str(L)],parameters['b'+str(L)] ,activation='sigmoid' )
    caches.append(cache)
    ### END CODE HERE ###
    
    assert(AL.shape == (1,X.shape[1]))
            
    return AL, caches
X, parameters = L_model_forward_test_case_2hidden()
AL, caches = L_model_forward(X, parameters)
print("AL = " + str(AL))
print("Length of caches list = " + str(len(caches)))
AL[[ 0.03921668 0.70498921 0.19734387 0.04728177]]
Length of caches list3

Great! Now you have a full forward propagation that takes the input X and outputs a row vector A[L]A[L] containing your predictions. It also records all intermediate values in "caches". Using A[L]A[L], you can compute the cost of your predictions.

5 - Cost function

Now you will implement forward and backward propagation. You need to compute the cost, because you want to check if your model is actually learning.

Exercise: Compute the cross-entropy cost JJ, using the following formula:

J=-\frac{1}{m}\sum{(y^{(i)}log{(a^{[2](i)})}+(1-y^{(i)})log(1-a^{[2](i)}))}

这个公式,应该不需要提醒了把

# GRADED FUNCTION: compute_cost

def compute_cost(AL, Y):
    """
    Implement the cost function defined by equation (7).

    Arguments:
    AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
    Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)

    Returns:
    cost -- cross-entropy cost
    """
    
    m = Y.shape[1]

    # Compute loss from aL and y.
    ### START CODE HERE ### (≈ 1 lines of code)
    cost = -1/m*(np.dot(Y,np.log(AL).T)+np.dot(1-Y,np.log(1-AL).T))
    ### END CODE HERE ###
    
    cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
    assert(cost.shape == ())
    
    return cost
Y, AL = compute_cost_test_case()

print("cost = " + str(compute_cost(AL, Y)))

Expected Output:

cost0.2797765635793422

6 - Backward propagation module

Just like with forward propagation, you will implement helper functions for backpropagation. Remember that back propagation is used to calculate the gradient of the loss function with respect to the parameters.

Reminder:

Figure 3 : Forward and Backward propagation for LINEAR->RELU->LINEAR->SIGMOID
The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.

Now, similar to forward propagation, you are going to build the backward propagation in three steps:

  • LINEAR backward
  • LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation
  • [LINEAR -> RELU] ×× (L-1) -> LINEAR -> SIGMOID backward (whole model)

6.1 - Linear backward

For layer ll, the linear part is:Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]}(followed by an activation).

Suppose you have already calculated the derivativedZ^{[l]}=\frac{\partial \pounds }{\partial Z^{[l]}}. You want to get (dW[l],db[l],dA[l−1]).

The three outputs (dW[l],db[l],dA[l−1]) are computed using the input dZ[l].Here are the formulas you need:

dW^{[l]}=\frac{\partial J }{\partial W^{[l]}}=\frac{1}{m}dZ^{[l]}A^{[l-1]T}

db^{[l]}=\frac{\partial J }{\partial b^{[l]}}=\frac{1}{m}\sum{dZ^{[l](i)}}

dA^{[l-1]}=\frac{\partial \pounds }{\partial A^{[l-1]}}=W^{[l]T}dZ^{[l]}

Exercise: Use the 3 formulas above to implement linear_backward().

为了更好的将后向传递函数模块化,我们需要将各自的偏导模块后,以后函数变化只需修改对应的两个小模块

首先完成线性部分

# GRADED FUNCTION: linear_backward

def linear_backward(dZ, cache):
    """
    Implement the linear portion of backward propagation for a single layer (layer l)

    Arguments:
    dZ -- Gradient of the cost with respect to the linear output (of current layer l)
    cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer

    Returns:
    dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    """
    A_prev, W, b = cache
    m = A_prev.shape[1]

    ### START CODE HERE ### (≈ 3 lines of code)
    dW = 1/m*np.dot(dZ,A_prev.T)
    db = 1/m*np.sum(dZ,axis=1,keepdims=True)
    dA_prev = np.dot(W.T,dZ)
    ### END CODE HERE ###
    
    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)
    
    return dA_prev, dW, db
# Set up some test inputs
dZ, linear_cache = linear_backward_test_case()

dA_prev, dW, db = linear_backward(dZ, linear_cache)
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))

Expected Output:

dA_prev = 
 [[-1.15171336  0.06718465 -0.3204696   2.09812712]
 [ 0.60345879 -3.72508701  5.81700741 -3.84326836]
 [-0.4319552  -1.30987417  1.72354705  0.05070578]
 [-0.38981415  0.60811244 -1.25938424  1.47191593]
 [-2.52214926  2.67882552 -0.67947465  1.48119548]]
dW = 
 [[ 0.07313866 -0.0976715  -0.87585828  0.73763362  0.00785716]
 [ 0.85508818  0.37530413 -0.59912655  0.71278189 -0.58931808]
 [ 0.97913304 -0.24376494 -0.08839671  0.55151192 -0.10290907]]
db = 
 [[-0.14713786]
 [-0.11313155]
 [-0.13209101]]

6.2 - Linear-Activation backward

Next, you will create a function that merges the two helper functions: linear_backward and the backward step for the activation linear_activation_backward.

To help you implement linear_activation_backward, we provided two backward functions:

  • sigmoid_backward: Implements the backward propagation for SIGMOID unit. You can call it as follows:
dZ = sigmoid_backward(dA, activation_cache)
  • relu_backward: Implements the backward propagation for RELU unit. You can call it as follows:
dZ = relu_backward(dA, activation_cache)

If g(.)g(.) is the activation function, sigmoid_backward and relu_backward compute

dZ^{[l]}=dA^{[l]}*g'(Z^{[l]}).

Exercise: Implement the backpropagation for the LINEAR->ACTIVATION layer.

完成线性部分后我们要实验非线性部分的偏导 linear_backward(dZ, cache)

# GRADED FUNCTION: linear_activation_backward

def linear_activation_backward(dA, cache, activation):
    """
    Implement the backward propagation for the LINEAR->ACTIVATION layer.
    
    Arguments:
    dA -- post-activation gradient for current layer l 
    cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
    activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
    Returns:
    dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    """
    linear_cache, activation_cache = cache
    
    if activation == "relu":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = relu_backward(dA,activation_cache)
        dA_prev, dW, db = linear_backward(dZ,linear_cache)
        ### END CODE HERE ###
        
    elif activation == "sigmoid":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = sigmoid_backward(dA,activation_cache)
        dA_prev, dW, db = linear_backward(dZ,linear_cache)
        ### END CODE HERE ###
    
    return dA_prev, dW, db
dAL, linear_activation_cache = linear_activation_backward_test_case()

dA_prev, dW, db = linear_activation_backward(dAL, linear_activation_cache, activation = "sigmoid")
print ("sigmoid:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db) + "\n")

dA_prev, dW, db = linear_activation_backward(dAL, linear_activation_cache, activation = "relu")
print ("relu:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))

Expected output with sigmoid:

dA_prev[[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]]
dW[[ 0.10266786 0.09778551 -0.01968084]]
db[[-0.05729622]]

Expected output with relu:

dA_prev[[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]]
dW[[ 0.44513824 0.37371418 -0.10478989]]
db[[-0.20837892]]

6.3 - L-Model Backward

Now you will implement the backward function for the whole network. Recall that when you implemented the L_model_forward function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you will use those variables to compute the gradients. Therefore, in the L_model_backward function, you will iterate through all the hidden layers backward, starting from layer LL. On each step, you will use the cached values for layer ll to backpropagate through layer ll. Figure 5 below shows the backward pass.

Initializing backpropagation: To backpropagate through this network, we know that the output is, A[L]=σ(Z[L])A[L]=σ(Z[L]). Your code thus needs to compute dAL =∂∂A[L]=∂L∂A[L]. To do so, use this formula (derived using calculus which you don't need in-depth knowledge of):

dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL

You can then use this post-activation gradient dAL to keep going backward. As seen in Figure 5, you can now feed in dAL into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L_model_forward function). After that, you will have to use a for loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula :

 

grads["dW"+str(l)]=dW[l](15)

For example, for l=3l=3 this would store dW[l]dW[l] in grads["dW3"].

Exercise: Implement backpropagation for the [LINEAR->RELU] ×× (L-1) -> LINEAR -> SIGMOID model.

后向传递函数整合linear_activation_backward(dA, cache, activation)

# GRADED FUNCTION: L_model_backward

def L_model_backward(AL, Y, caches):
    """
    Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
    
    Arguments:
    AL -- probability vector, output of the forward propagation (L_model_forward())
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
    caches -- list of caches containing:
                every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
                the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
    
    Returns:
    grads -- A dictionary with the gradients
             grads["dA" + str(l)] = ... 
             grads["dW" + str(l)] = ...
             grads["db" + str(l)] = ... 
    """
    grads = {}
    L = len(caches) # the number of layers
    m = AL.shape[1]
    Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
    
    # Initializing the backpropagation
    ### START CODE HERE ### (1 line of code)
    dAL =  - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    ### END CODE HERE ###
    
    # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current_cache". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"]
    ### START CODE HERE ### (approx. 2 lines)
    current_cache = caches[L-1]
    grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation='sigmoid')
    ### END CODE HERE ###
    
    # Loop from l=L-2 to l=0
    for l in reversed(range(L-1)):
        # lth layer: (RELU -> LINEAR) gradients.
        # Inputs: "grads["dA" + str(l + 1)], current_cache". Outputs: "grads["dA" + str(l)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] 
        ### START CODE HERE ### (approx. 5 lines)
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads['dA'+str(l+1)], current_cache, activation='relu')
        grads["dA" + str(l)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp
        ### END CODE HERE ###

    return grads
AL, Y_assess, caches = L_model_backward_test_case()
grads = L_model_backward(AL, Y_assess, caches)
print_grads(grads)

Expected Output

dW1[[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]]
db1[[-0.22007063] [ 0. ] [-0.02835349]]
dA1[[ 0.12913162 -0.44014127] [-0.14175655 0.48317296] [ 0.01663708 -0.05670698]]

6.4 - Update Parameters

In this section you will update the parameters of the model, using gradient descent:

 

W^{[l]}=W^{[l]}-\alpha dW^{[l]}(16)

b^{[l]}=b^{[l]}-\alpha db^{[l]}(17)

where αα is the learning rate. After computing the updated parameters, store them in the parameters dictionary.

Exercise: Implement update_parameters() to update your parameters using gradient descent.

Instructions: Update parameters using gradient descent on every W[l] and b[l] for l=1,2,...,L

更新参数,分的太细了,但是是真的好修改,而且以后列出神经网络的过程,可以快速找到位置

W^{[l]}=W^{[l]}-\alpha dW^{[l]}  b^{[l]}=b^{[l]}-\alpha db^{[l]}

# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradients, output of L_model_backward
    
    Returns:
    parameters -- python dictionary containing your updated parameters 
                  parameters["W" + str(l)] = ... 
                  parameters["b" + str(l)] = ...
    """
    
    L = len(parameters) // 2 # number of layers in the neural network

    # Update rule for each parameter. Use a for loop.
    ### START CODE HERE ### (≈ 3 lines of code)
    for l in range(L):
        parameters["W" + str(l+1)] = parameters['W'+str(l+1)]-learning_rate*grads['dW'+str(l+1)]
        parameters["b" + str(l+1)] = parameters['b'+str(l+1)]-learning_rate*grads['db'+str(l+1)]
    ### END CODE HERE ###
    return parameters
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads, 0.1)

print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))

Expected Output:

W1[[-0.59562069 -0.09991781 -2.14584584 1.82662008] [-1.76569676 -0.80627147 0.51115557 -1.18258802] [-1.0535704 -0.86128581 0.68284052 2.20374577]]
b1[[-0.04659241] [-1.28888275] [ 0.53405496]]
W2[[-0.55569196 0.0354055 1.32964895]]
b2[[-0.84610769]]

7 - Conclusion

Congrats on implementing all the functions required for building a deep neural network!

We know it was a long assignment but going forward it will only get better. The next part of the assignment is easier.

In the next assignment you will put all these together to build two models:

  • A two-layer neural network
  • An L-layer neural network

You will in fact use these models to classify cat vs non-cat images!

 

 

### 回答1: 《Neural Networks and Deep Learning》这本书被许多人评价为是关于深度学习的一本非常好的入门书。它以清晰易懂的方式解释了深度学习的核心概念,并且使用大量的图片和代码来帮助读者理解。如果您对深度学习感兴趣,那么这本书是一个不错的选择。 ### 回答2: 《Neural Networks and Deep Learning》是一本非常出色的书籍。它由Michael Nielsen撰写,提供了关于神经网络和深度学习的详细而清晰的介绍。 这本书以易于理解和深入的方式解释了神经网络和深度学习的基本概念和原理。它从基础知识开始,逐步引导读者了解神经元、多层神经网络、反向传播和激活函数等关键概念。通过直观的解释和简单的数学推导,读者可以很好地理解这些复杂的概念。 书中还包含了许多实例和示例,帮助读者将理论应用到实际问题中。例如,它详细介绍了如何使用神经网络解决手写数字识别的问题,并提供了相关的代码实现。这些实例不仅使得理论更加易于理解,也为读者提供了实际操作的经验和技能。 此外,《Neural Networks and Deep Learning》还提供了大量的引用文献和进一步阅读的建议,帮助读者进一步深入学习和探索相关领域的研究。这为读者进一步拓宽知识领域提供了便利。 总体而言,这本书不仅适合对神经网络和深度学习感兴趣的初学者,也适合那些已经有一定了解但希望进一步加深理解的读者。它以简洁明了的方式传递了复杂的概念,提供了大量的实例和引用文献,是一本极具价值的学习资源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值