平衡二叉树的判断和优化

本文讨论了如何计算二叉树的最大高度,并详细解释了如何判断一棵二叉树是否为平衡二叉树。在初始方法中,二叉树的高度通过比较根节点的左右子树高度得出,而判断平衡则需要递归检查每个节点。为优化效率,提出在求解高度的同时进行平衡性判断,一旦发现不平衡,立即返回-1,避免冗余计算,将时间复杂度降至O(N)。
摘要由CSDN通过智能技术生成
1、二叉树的最大高度
  • 分析:二叉树的高度为根节点到最远叶子节点的最长路径上的节点数。
  • 思路:比较根结点的左右子树的最大高度 + 1(到根结点的高度);递到叶子结点那一层把高度依次返回给双亲结点,直到根根结点。
    递推关系:而每一个结点的左子树高度都等于下一个结点的左子树高度+1(右子树那一路递归同理)
    递归出口:递到最左子树为null
	public int maxDepth(TreeNode root) {
   
        if(root == null) {
   
            return 0;
        }
        int left = maxDepth(root.left);
        int right = maxDepth(root.right);
        return 1+Math.max(left,right);
    }
2、判断一棵二叉树是否为平衡二叉树

平衡二叉树:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1

  • 分析:
    1、分别求出每个结点的左右子树的高度(如 1)
    2、判断所有结点的左右子树高度差是否满足平衡条件,递归问题。
    递推关系:遍历到每一个结点,求每一个
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值