PyTorch学习笔记(一)基本建模流程

这篇PyTorch学习笔记详细介绍了如何实现线性回归和对数回归,包括环境配置、数据获取、模型构建及训练过程。通过可视化结果展示了模型逐步拟合的过程。
摘要由CSDN通过智能技术生成

Environment

  • OS: macOS Mojave
  • Python version: 3.7
  • PyTorch version: 1.4.0
  • IDE: PyCharm


0. 写在前面

本文记录了使用 PyTorch 实现简单的线性回归和对率回归的基本流程,包括获得数据、建立模型和训练模型。之后数据和模型更复杂,但是这些 workflow 是一致的。

1. 线性回归

import numpy as np
import torch
import matplotlib.pyplot as plt
import seaborn as sns


class Config:
    """ 设置训练相关的参数 """
    def __init__(self):
        self.epochs = 5000  # 训练迭代数
        self.lr = 0.00003  # 学习率
        self.vis_interval = int(self.epochs / 10)  # 每隔这么多个 epoch 进行一次可视化作图


cfg = Config()

# ========== Step 1/3: 获取数据 ==========

torch.manual_seed(0)

x = torch.linspace(-10, 10, steps=50)
y = 2. * x + 1. + torch.randn(50) * 3  # add some noises

# ========== Step 2/3: 建立模型 ==========

torch.manual_seed(1)

w = torch.randn((1,), requires_grad=True)
b = torch.randn((1,), requires_grad=True)

# ========== Step 3/3: 训练模型 ==========

for epoch in range(1, cfg.epochs + 1):
    # ---------- step 1/3: 前向传播计算代价 ----------
    out = x * w + b
    loss = (0.5 * (out - y) ** 2).mean(<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值