1001 害死人不偿命的(3n+1)猜想

题目描述

卡拉兹(Callatz)猜想:

对任何一个正整数 n n n ,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 ( 3 n + 1 ) (3n+1) (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n = 1 n=1 n=1 。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 ( 3 n + 1 ) (3n+1) (3n+1) ,以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n n n ,简单地数一下,需要多少步(砍几下)才能得到 n = 1 n=1 n=1

输入格式

每个测试输入包含 1 个测试用例,即给出正整数 n n n 的值。

输出格式

输出从 n n n 计算到 1 需要的步数。

样例

输入样例

3

输出样例

5

思路

置一计数器 t ← 0 t\gets 0 t0 ,对 n n n 进行重复进行如下计算,直到 n = 1 n=1 n=1
n ← { n / 2 n 为 偶 数 ( 3 n + 1 ) / 2 n 为 奇 数 n\gets \begin{cases} n/2 &n为偶数\\ (3n+1)/2 &n为奇数 \\ \end{cases} n{n/2(3n+1)/2nn
在每一次计算后,令 t ← t + 1 t\gets t+1 tt+1 ,输出最终 t t t 的值即可。

参考代码

#include <bits/stdc++.h>

using namespace std;

int main(void) {
    int input, times = 0;
    cin >> input;
    while(input != 1) {
        if(input % 2) {
            input = (input * 3 + 1) / 2;
        } else {
            input /= 2;
        }
        times++;
    }
    cout << times;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值