点在多边形内外的判断【计算几何】

点在多边形内外的判断有两种处理方法:射线法和转角法

一、射线法:

  • 从这一点出发,引向无穷远点的一条射线,根据交点情况确定点的位置
  • 特点:特殊情况不易处理
  1. 以要判断的点为起点,任做一条射线,计算该射线与多边形的交点的数目
  2. 若有偶数个交点,则点在多边形外;否则,点在多边形内
  3. 若与线段所在的端点处重合或相交,则要进行复杂的判断;此时可另取一条射线

二、转角法:

  • 计算多边形每条边的转角,最后相消为0,则点在多边形内部,否则点在多边形外部
  • 特点:三角形运算时间开销大
  1. 把多边形每条边的转角加起来:如果是360度,则点在多边形内;如果是0度,点在多边形外;如果是180度,则点在多边形边上;
  2. 直接求角度要用反三角函数,精度差且费时
  3. 如果是凸多边形,就用叉积

例题:POJ 1410 Intersection 判断线段交和点在矩形内 

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h>

using namespace std;
const double eps = 1e-8;
int sgn(double x)
{
    if(fabs(x) < eps)return 0;
    if(x < 0)return -1;
    else return 1;
}
struct Point
{
    double x,y;
    Point(){}
    Point(double _x,double _y)
    {
        x = _x;y = _y;
    }
    Point operator -(const Point &b)const
    {
        return Point(x - b.x,y - b.y);
    }
    //叉积
    double operator ^(const Point &b)const
    {
        return x*b.y - y*b.x;
    }
    //点积
    double operator *(const Point &b)const
    {
        return x*b.x + y*b.y;
    }
    //绕原点旋转角度B(弧度值),后x,y的变化
    void transXY(double B)
    {
        double tx = x,ty = y;
        x = tx*cos(B) - ty*sin(B);
        y = tx*sin(B) + ty*cos(B);
    }
};
struct Line
{
    Point s,e;
    double k;
    Line(){}
    Line(Point _s,Point _e)
    {
        s = _s;e = _e;
        k = atan2(e.y - s.y,e.x - s.x);
    }
    //两条直线求交点,
    //第一个值为0表示直线重合,为1表示平行,为2是相交
    //只有第一个值为2时,交点才有意义
    pair<int,Point> operator &(const Line &b)const
    {
        Point res = s;
        if(sgn((s-e)^(b.s-b.e)) == 0)
        {
            if(sgn((s-b.e)^(b.s-b.e)) == 0)
                return make_pair(0,res);//重合
            else return make_pair(1,res);//平行
        }
        double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
        res.x += (e.x-s.x)*t;
        res.y += (e.y-s.y)*t;
        return make_pair(2,res);
    }
};
//两点间距离
double dist(Point a,Point b)
{
    return sqrt((a-b)*(a-b));
}
//判断线段相交
bool inter(Line l1,Line l2)
{
    return
        max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
        max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
        max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
        max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
        sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s)) <= 0 &&
        sgn((l1.s-l2.s)^(l2.e-l1.s))*sgn((l1.e-l2.s)^(l2.e-l2.s)) <= 0;
}
//判断点在线段上
bool OnSeg(Point p,Line L)
{
    return
    sgn((L.s-p)^(L.e-p))==0&&
    sgn((p.x-L.s.x)*(p.x-L.e.x))<=0&&
    sgn((p.y-L.s.y)*(p.y-L.e.y))<=0;
}

//判断点在凸多边形内,点形成一个凸包,而且按逆时针排序
//如果是顺时针,就把<0改成>0
//点的编号:0~n-1
//返回值:-1点在凸多边形外,0点在凸多边形边上,1点在凸多边形内
int inConvexPoly(Point a,Point p[],int n)
{
    for(int i=0;i<n;i++)
    {
        if(sgn((p[i]-a)^(p[(i+1)%n]-a))<0)
           return -1;
        else if(OnSeg(a,Line(p[i],p[(i+1)%n])))
            return 0;
    }
    return 1;
}

//判断点在任意多边形内
//射线法,poly[]的顶点数要大于等于3,点的编号:0~n-1
//返回值
//-1:点在多边形外
//0:点在多边形边界上
//1:点在多边形内
int inPoly(Point p,Point poly[],int n)
{
    int cnt=0;
    Line ray,side;
    ray.s=p;
    ray.s.y=p.y;
    ray.e.x=-100000000000.0;//-INF,注意取值,防止越界

    for(int i=0;i<n;i++)
    {
        side.s=poly[i];
        side.e=poly[(i+1)%n];
        if(OnSeg(p,side))   return 0;
        //如果平行轴,则不考虑
        if(sgn(side.s.y-side.e.y)==0)
            continue;
        if(OnSeg(side.s,ray)){
            if(sgn(side.s.y-side.e.y)>0)
                cnt++;
        }
        else if(OnSeg(side.e,ray)){
            if(sgn(side.e.y-side.s.y)>0)
                cnt++;
        }
        else if(inter(ray,side))
            cnt++;
    }
    if(cnt%2==1)
        return 1;
    else
        return -1;
}

 

阅读更多
换一批

没有更多推荐了,返回首页