皮克定理
一张方格纸上,上面画着纵横两组平行线,相邻平行线之间的距离都相等,这样两组平行线的交点,就是所谓格点。如果取一个格点做原点O,如图1,取通过这个格点的横向和纵向两直线分别做横坐标轴OX和纵坐标轴OY,并取原来方格边长做单位长,建立一个坐标系。这时前面所说的格点,显然就是纵横两坐标都是整数的那些点。如图1中的黑点都是格点。由于这个缘故,我们又叫格点为整点。
一个多边形的顶点如果全是格点,这多边形就叫做格点多边形。有趣的是,这种格点多边形的面积计算起来很方便,只要数一下图形边线上的点的数目及图内的点的数目,就可用公式算出。
s=l/2+n-1;
- s:三角形中包括边上整点的个数。
- l:边上的整点;
- n:三角形内部的点的个数。
三角形的内点
#include<cstdio>//s=l/2+n-1;
#include<cmath>
#include<cstdlib>
int a,b,c,d,e,f;
int area(){
return abs((a*d+c*f+b*e-a*f-b*c-d*e)/2);
}
int gcd(int x,int y)
{
if(y==0)return x;
else
return gcd(y,x%y);
}
int main ()
{
int n,m,p;
scanf("%d%d%d",&n,&m,&p);
//scanf("%d%d%d%d%d%d",&a,&b,&c,&d,&e,&f);
a=0,b=0;
c=n,d=m;
e=p,f=0;
int s=area();
int l1=gcd(abs(a-c),abs(b-d));
int l2=gcd(abs(a-e),abs(b-f));
int l3=gcd(abs(c-e),abs(d-f));
printf("%d\n",s-(l1+l2+l3)/2+1);
return 0;
}
/*
0 0 0 3 3 3
*/