三角形内部整点的个数【皮克定理】

本文介绍了皮克定理,这是一种在方格纸上计算格点多边形面积的方法。通过数图形边线上的点和图内的点,可以方便地计算出面积。文章还提供了一个使用C++实现的示例程序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

皮克定理

一张方格纸上,上面画着纵横两组平行线,相邻平行线之间的距离都相等,这样两组平行线的交点,就是所谓格点。如果取一个格点做原点O,如图1,取通过这个格点的横向和纵向两直线分别做横坐标轴OX和纵坐标轴OY,并取原来方格边长做单位长,建立一个坐标系。这时前面所说的格点,显然就是纵横两坐标都是整数的那些点。如图1中的黑点都是格点。由于这个缘故,我们又叫格点为整点。

在这里插入图片描述

一个多边形的顶点如果全是格点,这多边形就叫做格点多边形。有趣的是,这种格点多边形的面积计算起来很方便,只要数一下图形边线上的点的数目及图内的点的数目,就可用公式算出。

s=l/2+n-1;

  • s:三角形中包括边上整点的个数。
  • l:边上的整点;
  • n:三角形内部的点的个数。

三角形的内点

#include<cstdio>//s=l/2+n-1;
#include<cmath>
#include<cstdlib>
int a,b,c,d,e,f;
int area(){
    return abs((a*d+c*f+b*e-a*f-b*c-d*e)/2);
}
int gcd(int x,int y)
{
    if(y==0)return x;
    else
        return gcd(y,x%y);
}
int main ()
{
    int n,m,p;
    scanf("%d%d%d",&n,&m,&p);
    //scanf("%d%d%d%d%d%d",&a,&b,&c,&d,&e,&f);
    a=0,b=0;
    c=n,d=m;
    e=p,f=0;
    int s=area();
    int l1=gcd(abs(a-c),abs(b-d));
    int l2=gcd(abs(a-e),abs(b-f));
    int l3=gcd(abs(c-e),abs(d-f));
    printf("%d\n",s-(l1+l2+l3)/2+1);
    return 0;
}
/*
0 0 0 3 3 3
*/
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值