一万年没有更新过博客啦。。把之前做过的题都慢慢补上吧= =
请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。
题意就是c i是a和b中距离差为定值k的元素的乘积。
翻转b数组后变为卷积形式。。直接做就好了
#include<bits/stdc++.h>
using namespace std;
const double Pi=acos(-1);
const int MAXN=4e5+5;
struct cp{
double x,y;
cp(double xx=0,double yy=0){x=xx,y=yy;}
}a[MAXN],b[MAXN];
cp operator +(cp a,cp b){
return cp(a.x+b.x,a.y+b.y);
}
cp operator -(cp a,cp b){
return cp(a.x-b.x,a.y-b.y);
}
cp operator *(cp a,cp b){
return cp(a.x*b.x-a.y*b.y,a.x*b.y+b.x*a.y);
}
int l,r[MAXN],n,limit=1;
void FFT(cp *A,int ty){
for(int i=0;i<limit;i++)
if(i<r[i])swap(A[i],A[r[i]]);
for(int mid=1;mid<limit;mid<<=1){
cp Wn(cos(Pi/mid),ty*sin(Pi/mid));
int R=mid<<1;
for(int j=0;j<limit;j+=R){
cp W(1,0);
for(int k=0;k<mid;k++){
cp x=A[j+k],y=W*A[j+mid+k];
A[j+k]=x+y;
A[j+mid+k]=x-y;
W=W*Wn;
}
}
}
}
int main(){
scanf("%d",&n);
n--;
for(int i=0;i<=n;i++){
scanf("%lf%lf",&a[i],&b[n-i]);
}
while(limit<=n+n)limit<<=1,l++;
for(int i=0;i<limit;i++){
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
}
FFT(a,1);
FFT(b,1);
for(int i=0;i<=limit;i++)a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=n;i<=n+n;i++)printf("%d\n",(int)(a[i].x/limit+0.5));
return 0;
}