Pytorch.device使用及理解

本文详细解析了PyTorch中torch.device的作用,包括如何选择设备(cuda或cpu),如何将模型迁移到指定设备,以及在多GPU环境下的处理方法。重点介绍了如何使用model.to(device)将模型与tensor移动到正确设备以优化GPU性能。
摘要由CSDN通过智能技术生成

Pytorch to(device)

Pytorch.device理解

device=cuda之类的
转载合并了一下其他同学的讲解.
链接: https://blog.csdn.net/shaopeng568/article/details/95205345
torch.device代表将torch.Tensor分配到的设备的对象。torch.device包含一个设备类型(‘cpu’或‘cuda’)和可选的设备序号。如果设备序号不存在,则为当前设备。如:torch.Tensor用设备构建‘cuda’的结果等同于‘cuda:X’,其中X是torch.cuda.current_device()的结果。

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

这两行代码放在读取数据之前。

mytensor = my_tensor.to(device)

这行代码的意思是将所有最开始读取数据时的tensor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行。

这句话需要写的次数等于需要保存GPU上的tensor变量的个数;一般情况下这些tensor变量都是最开始读数据时的tensor变量,后面衍生的变量自然也都在GPU上.

如果是多个GPU
在代码中的使用方法为:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = Model()
if torch.cuda.device_count() > 1:
  model = nn.DataParallel(model,device_ids=[0,1,2])
pytorch中model=model.to(device)用法

https://blog.csdn.net/weixin_36670529/article/details/106068761
https://blog.csdn.net/weixin_36670529/article/details/106068761
device=torch.device(“cpu”)代表的使用cpu,而device=torch.device(“cuda”)则代表的使用GPU。
当我们指定了设备之后,就需要将模型加载到相应设备中,此时需要使用model=model.to(device),将模型加载到相应的设备中。将由GPU保存的模型加载到CPU上。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值