2017.11.29
GitHub地址:https://github.com/matterport/Mask_RCNN
首先表达一下对凯明大神和RBG大神的膜拜!
1.我是在Ubuntu16.04的环境下,开辟了一个虚拟环境,
1.1 创建虚拟环境
创建python3环境
virtualenv
--python=/usr/bin/pyhton3 vene
1.2 进入虚拟环境
source vene/bin/activate
1.3 退出虚拟环境
deactivate
我的Python版本是3.5.4的
2.安装anaconda(Python 3.4+)
从官网https://www.anaconda.com/download/上下载,选择适合自己版本的,我下载的是Anaconda3-5.0.1-Linux-x86_64.sh
之后bashAnaconda3-5.0.1-Linux-x86_64.sh
遇到提示按enter,最后会提示是否加入path路径,亦可自行修改文件内容
export PATH=/home/qihongtu/zpp1/anaconda3:$PATH
echo
$PATH 查看现有的地址
配置文件可以查看http://blog.csdn.net/wwwdc1012/article/details/76350781
3.安装Keras
TensorFlow
查看Keras官方安装文档http://keras-cn.readthedocs.io/en/latest/for_beginners/keras_linux/
需要注意的是,因为我是在虚拟环境中,不需要sudo,不然TensorFlow和Keras会安装到本身Python2.7的版本中,注意,注意,注意
4.下载代码git
clone
https://github.com/matterport/Mask_RCNN
下载预先编译好的模板https://github.com/matterport/Mask_RCNN/releases
mask_rcnn_coco.h5
5.安装pycocotools
虽然别人说只是在跑自己的数据时才需要安装pycocotools,但是我跑demo的时候一直报没有pycocotools模块的错误
可以看Mask_rcnn下的coco.py文件,里面有注释说https://github.com/pdollar/coco这个网页下载的pycocotools有问题,故从https://github.com/waleedka/coco下载,并将PythonAPI/Makefile里面的Python改为Python3
在PythonAPI中make,会产生pycocotools文件夹,将这个文件夹拷入Mask_rcnn主目录下
有人说安装好以后在ipython下输入from
pycocotools.coco import
COCO,但是我的一直有QXcbConnection: Could not connect to display 这个错误,没有找到原因
但是我的在Python的环境下输入from
pycocotools.coco import
COCO是OK的。
6.下载coco数据,MS
COCO是一个大型图像数据集用于目标检测,分割以及图像字幕产生。
下载网址http://cocodataset.org/#download,下载速度还可以
7.输入jupyter
notebook
打开ip地址和设置好的端口,输入密码,就可以使用了,jupyter
notebook 建议看http://blog.csdn.net/tina_ttl/article/details/51031113,将各种快捷键进行了说明,很方便。
我现在跑通了demo部分,可以更换自己的图片进行detect,其他的暂时没有看,后面会在更新。