matterport MASK RCNN配置

2017.11.29

GitHub地址:https://github.com/matterport/Mask_RCNN

首先表达一下对凯明大神和RBG大神的膜拜!

1.我是在Ubuntu16.04的环境下,开辟了一个虚拟环境,

1.1 创建虚拟环境 

创建python3环境

 
 
virtualenv --python=/usr/bin/pyhton3 vene

1.2  进入虚拟环境

source vene/bin/activate

1.3 退出虚拟环境

deactivate

我的Python版本是3.5.4的

2.安装anaconda(Python 3.4+)

从官网https://www.anaconda.com/download/上下载,选择适合自己版本的,我下载的是Anaconda3-5.0.1-Linux-x86_64.sh

之后bashAnaconda3-5.0.1-Linux-x86_64.sh

遇到提示按enter,最后会提示是否加入path路径,亦可自行修改文件内容

export PATH=/home/qihongtu/zpp1/anaconda3:$PATH

echo
$PATH 查看现有的地址

配置文件可以查看http://blog.csdn.net/wwwdc1012/article/details/76350781

3.安装Keras
TensorFlow

查看Keras官方安装文档http://keras-cn.readthedocs.io/en/latest/for_beginners/keras_linux/

需要注意的是,因为我是在虚拟环境中,不需要sudo,不然TensorFlow和Keras会安装到本身Python2.7的版本中,注意,注意,注意

4.下载代码git
clone
https://github.com/matterport/Mask_RCNN

下载预先编译好的模板https://github.com/matterport/Mask_RCNN/releases

mask_rcnn_coco.h5

5.安装pycocotools

虽然别人说只是在跑自己的数据时才需要安装pycocotools,但是我跑demo的时候一直报没有pycocotools模块的错误

可以看Mask_rcnn下的coco.py文件,里面有注释说https://github.com/pdollar/coco这个网页下载的pycocotools有问题,故从https://github.com/waleedka/coco下载,并将PythonAPI/Makefile里面的Python改为Python3

在PythonAPI中make,会产生pycocotools文件夹,将这个文件夹拷入Mask_rcnn主目录下

有人说安装好以后在ipython下输入from
pycocotools.coco
import
COCO,但是我的一直有QXcbConnection: Could not connect to display 这个错误,没有找到原因

但是我的在Python的环境下输入from
pycocotools.coco
import
COCO是OK的。

6.下载coco数据,MS
COCO是一个大型图像数据集用于目标检测,分割以及图像字幕产生。

下载网址http://cocodataset.org/#download,下载速度还可以

7.输入jupyter
notebook

打开ip地址和设置好的端口,输入密码,就可以使用了,jupyter
notebook 建议看http://blog.csdn.net/tina_ttl/article/details/51031113,将各种快捷键进行了说明,很方便。

我现在跑通了demo部分,可以更换自己的图片进行detect,其他的暂时没有看,后面会在更新。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值