卷积和池化的区别

转载 2018年04月16日 18:19:08

卷积和池化的区别

12540人阅读 评论(0) 收藏 举报
分类:
Deep Learning(深度学习)(12)
1、卷积
当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8x8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。


 下面给出一个具体的例子:假设你已经从一个 96x96 的图像中学习到了它的一个 8x8 的样本所具有的特征,假设这是由有 100 个隐含单元的自编码完成的。为了得到卷积特征,需要对 96x96 的图像的每个 8x8 的小块图像区域都进行卷积运算。也就是说,抽取 8x8 的小块区域,并且从起始坐标开始依次标记为(1,1),(1,2),...,一直到(89,89),然后对抽取的区域逐个运行训练过的稀疏自编码来得到特征的激活值。在这个例子里,显然可以得到 100 个集合,每个集合含有 89x89 个卷积特征。

 如下图所示,展示了一个3×3的卷积核在5×5的图像上做卷积的过程。每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件(激活值越大越符合条件)的部分筛选出来。

Convolution schematic.gif

2:说下池化,其实池化很容易理解,先看图:

  转自:  http://blog.csdn.net/silence1214/article/details/11809947


比如上方左侧矩阵A是20*20的矩阵要进行大小为10*10的池化,那么左侧图中的红色就是10*10的大小,对应到右侧的矩阵,右侧每个元素的值,是左侧红色矩阵每个元素的值得和再处于红色矩阵的元素个数,也就是平均值形式的池化。

3:上面说了下卷积和池化,再说下计算中需要注意到的。在代码中使用的是彩色图,彩色图有3个通道,那么对于每一个通道来说要单独进行卷积和池化,有一个地方尤其是进行卷积的时候要注意到,隐藏层的每一个值是对应到一幅图的3个通道穿起来的,所以分3个通道进行卷积之后要加起来,正好才能对应到一个隐藏层的神经元上,也就是一个feature上去。

卷积Convolution和池化pooling特征提取,分类

前言:   本次实验是练习convolution和pooling的使用,更深一层的理解怎样对大的图片采用convolution得到每个特征的输出结果,然后采用pooling方法对这些结果进行计算,使之...
  • whiteinblue
  • whiteinblue
  • 2014-03-26 11:30:27
  • 7918

反卷积(Deconvolution)上采样(Upsampling)上池化(Unpooling)的区别

原文链接见下:https://www.quora.com/What-is-the-difference-between-Deconvolution-Upsampling-Unpooling-and-C...
  • u012949263
  • u012949263
  • 2017-01-12 17:24:37
  • 1954

tensorflow中的卷积和池化解释

首先,卷积和池化的基本概念就不用多说了,写这个东西的太多了,这里主要说说tensorflow中的相关内容。 再看看tensorflow中关于这两个函数的接口定义: tf.nn.conv2d( ...
  • sophia_xw
  • sophia_xw
  • 2017-04-19 14:09:15
  • 1320

反卷积(Deconvolution)上采样(Upsampling)上池化(Unpooling)的区别——附翻译

http://blog.csdn.net/u012949263/article/details/54379996 提供了英文版 Question: Deconvolution netw...
  • xiaoli_nu
  • xiaoli_nu
  • 2018-01-10 21:27:50
  • 1040

深度学习之CNN一 卷积与池化

1 卷积连续: 一维卷积:s(t)=(x∗w)(t)=∫x(a)w(t−a)dts(t)=(x*w)(t)=\int x(a)w(t-a)dt 二维卷积:S(t)=(K∗I)(i,...
  • poorfriend
  • poorfriend
  • 2016-06-05 10:34:22
  • 8388

卷积层和池化层学习

卷积神经网络_(1)卷积层和池化层学习 卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC (1)卷积层:用它来进...
  • zhaoluruoyan89
  • zhaoluruoyan89
  • 2017-12-01 10:22:26
  • 1532

卷积和池化的总结

当输入图像特别大的时候,假设是100X100的图像,若隐含层和输入层是“全连接”的话,则就会有10的4次方的输入单元,若要学习100个特征,那一层就有10的6次方个参数需要去学习,一层网络就有这么大的...
  • aisikaov5
  • aisikaov5
  • 2016-04-29 10:57:51
  • 2659

卷积神经网络学习--卷积和池化

卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC。本文主要针对卷积层和池化层涉及的技术进行学习和整理,有理解的不对的地方希望能给...
  • huahuazhu
  • huahuazhu
  • 2017-06-19 17:21:10
  • 755

卷积特征提取与池化(Pooling)——处理大型图像

在之前的章节中,我们已经很好地解决了手写体识别问题(维数为28*28)。但如果是更大的图像(维数为96*96)呢?如果你还是要学习400个特征,那么网络权重参数就有400*96*96即近400万个。 ...
  • u012428391
  • u012428391
  • 2014-08-18 16:49:37
  • 7669

UFLDL 11 卷积与池化 convolution pooling

卷积特征 convolution之前我们都是用很小的图片来做示范,比如8x8,但是很多图片是很大的,比如是100x100,假设我们需要在隐含层提取100个特征,那么一共需要的参数有100x100x10...
  • bea_tree
  • bea_tree
  • 2016-05-11 20:29:53
  • 850
收藏助手
不良信息举报
您举报文章:卷积和池化的区别
举报原因:
原因补充:

(最多只允许输入30个字)