马尔科夫过程

马尔科夫过程是一种随机过程,其未来状态仅依赖于当前状态,与过去无关。马尔可夫链是其离散时间形式,转移概率矩阵描述了状态之间的转移。本文介绍了马尔科夫过程的定义、马尔可夫链的性质以及一个天气转换的例子来说明其应用。
摘要由CSDN通过智能技术生成

什么是马尔可夫过程
1、马尔可夫性(无后效性)

过程或(系统)在时刻t0所处的状态为已知的条件下,过程在时刻t > t0所处状态的条件分布,与过程在时刻t0之前年处的状态无关的特性称为马尔可夫性或无后效性。

即:过程“将来”的情况与“过去”的情况是无关的。

2、马尔可夫过程的定义

具有马尔可夫性的随机过程称为马尔可夫过程。

用分布函数表述马尔可夫过程:

设I:随机过程{X(t),t∈T}的状态空间,如果对时间t的任意n个数值:  在这里插入图片描述
或写成:
在这里插入图片描述
  这时称过程X(t),t∈T具马尔可夫性或无后性,并称此过程为马尔可夫过程。
  
3、马尔可夫链的定义
  时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为Xn=X(n),n=0,1,2,…

马尔可夫过程的概率分布

研究时间和状态都是离散的随机序列:Xn=X(n),n=0,1,2,…,状态空间为I=a1,a2,…,ai,ai∈R

1、用分布律描述马尔可夫性

对任意的正整数n,r和在这里插入图片描述有: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值