什么是马尔可夫过程
1、马尔可夫性(无后效性)
过程或(系统)在时刻t0所处的状态为已知的条件下,过程在时刻t > t0所处状态的条件分布,与过程在时刻t0之前年处的状态无关的特性称为马尔可夫性或无后效性。
即:过程“将来”的情况与“过去”的情况是无关的。
2、马尔可夫过程的定义
具有马尔可夫性的随机过程称为马尔可夫过程。
用分布函数表述马尔可夫过程:
设I:随机过程{X(t),t∈T}的状态空间,如果对时间t的任意n个数值:
或写成:
这时称过程X(t),t∈T具马尔可夫性或无后性,并称此过程为马尔可夫过程。
3、马尔可夫链的定义
时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为Xn=X(n),n=0,1,2,…
马尔可夫过程的概率分布
研究时间和状态都是离散的随机序列:Xn=X(n),n=0,1,2,…,状态空间为I=a1,a2,…,ai,ai∈R
1、用分布律描述马尔可夫性
对任意的正整数n,r和有: