自然语言处理优秀博客汇总

注意力机制总结
Attention 的 N 种类型
Kaggle知识点:数据扩增方法
有哪些数据扩增方法?

数据扩增方法有很多:从颜色空间、尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别。

对于图像分类,数据扩增一般不会改变标签;对于物体检测,数据扩增会改变物体坐标位置;对于图像分割,数据扩增会像素标签。
对抗学习:从FGM, PGD到FreeLB
本文针对自然语言中的对抗学习,针对攻击的“一阶扰动”场景,总结了最近的工作进展,涉及到的知识包括:基本单步算法FGM,“一阶扰动”最强多步算法PGD,以及针对时耗等改进的FreeAT,YOPO和FreeLB,其中FreeLB成为了目前刷榜的SOA。
Task 4 学习召回率、准确率、ROC曲线、AUC、PR曲线
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值