水深平均的二维浅水方程推导

浅水方程推导

将三维的基本方程沿水深积分平均,即可得到沿水深平均的平面二维流动基本方程。

定义水深为H=\zeta-Z_{0}\zetaZ_{0}为基准面下液面水位和河床高程:

定义沿水深平均流速U_{i}为:

H=\zeta-Z_{0}U_{i}=\frac{1}{H} \int_{z_{0}}^{\zeta} \bar{u}_{i} d z

引用莱布尼兹公式

\frac{\partial}{\partial x_{i}} \int_{b}^{a} f d z=\int_{a}^{b} \frac{\partial f}{\partial x_{i}} d z+\left.f\right|_{b} \frac{\partial b}{\partial x_{i}}-\left.f\right|_{a} \frac{\partial a}{\partial x_{i}}

自由表面及底部运动学条件

\begin{array}{l} \left.\bar{u}_{z}\right|_{z=\zeta}=\frac{d \bar{\zeta}}{d t}=\frac{\partial \bar{\zeta}}{\partial t}+\left.\frac{\partial \bar{\zeta}}{\partial x} \bar{u}_{x}\right|_{z=\zeta}+\left.\frac{\partial \bar{\zeta}}{\partial y} \bar{u}_{y}\right|_{z=\zeta} \\ \left.\bar{u}_{z}\right|_{z=z_{0}}=\frac{d \overline{z_{0}}}{d t}=\frac{\partial \overline{z_{0}}}{\partial t}+\left.\frac{\partial \overline{z_{0}}}{\partial x} \overline{u_{x}}\right|_{z=z_{0}}+\left.\frac{\partial \overline{z_{0}}}{\partial y} \overline{u_{y}}\right|_{z=z_{0}} \end{array}

x方向为例三维流动的运动方程沿水深平均为

\large \int_{z_{0}}^{\zeta}\left[\frac{\partial \overline{u_{x}}}{\partial t}+\frac{\partial}{\partial x}\left(\overline{u_{x}} \overline{u_{x}}\right)+\frac{\partial}{\partial y}\left(\bar{u}_{x} \overline{u_{y}}\right)+\frac{\partial}{\partial z}\left(\overline{u_{x}} \overline{u_{z}}\right)+\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x}-v_{t}\left(\frac{\partial^{2} \overline{u_{x}}}{\partial x^{2}}+\frac{\partial^{2} \overline{u_{y}}}{\partial y^{2}}+\frac{\partial^{2} \overline{u_{z}}}{\partial z^{2}}\right)\right] d z=0

非恒定项积分

\large \begin{array}{l} \int_{z_{0}}^{\zeta} \frac{\partial u_{x}}{\partial t} d z=\frac{\partial}{\partial t} \int_{z_{0}}^{\zeta} \overline{u_{x}} d z-\left.\frac{\partial \zeta}{\partial t} \overline{u_{x}}\right|_{z=\zeta}+\left.\frac{\partial z_{0}}{\partial t} u_{x}\right|_{z=z_{0}} \\ =\frac{\partial H U_{x}}{\partial t}-\left.\frac{\partial \bar{\zeta}}{\partial t} \overline{u_{x}}\right|_{z=\zeta}+\left.\frac{\partial \overline{z_{0}}}{\partial t} \overline{u_{x}}\right|_{z=z_{0}} \end{array}

对流项积分

首先将时均流速分解为\large \bar{u}_{i}=U_{i}+\Delta \bar{u}_{i},式中\large U_{i}为垂线平均流速,\large \Delta \bar{u}_{i}为时均流速\large \bar{u}_{i}与垂线平均流速\large U_{i}的差值。

\large \begin{array}{l} \int_{z_{0}}^{\zeta} \overline{u_{x}} \bar{u}_{x} d z=\int_{z_{0}}^{\zeta}\left(U_{x}+\Delta \overline{u_{x}}\right)\left(U_{x}+\Delta \overline{u_{x}}\right) d z \\ =\int_{z_{0}}^{\zeta}\left(U_{x} U_{x}+\Delta \overline{u_{x}} \Delta \overline{u_{x}}+2 U_{x} \Delta \overline{u_{x}}\right) d z \\ =H U_{x} U_{x}+\int_{z_{0}}^{\zeta} \Delta \overline{u_{x}} \Delta \overline{u_{x}} d z=\beta_{x x} H U_{x} U_{x} \end{array}

式中,\large \beta_{x x}=1+\frac{\int_{z_{0}}^{\zeta} \Delta \overline{u_{x}} \Delta \overline{u_{x}} d z}{H U_{x} U_{x}},是由于流速沿垂线分布不均匀而引入的修正系数,类似于水力学中的动量修正系数,其数值一般在1.02—1.05,可以近似取1.0,因此

\large \int_{z_{0}}^{\zeta} \frac{\partial \overline{u_{x}} \overline{u_{x}}}{\partial x} d z=\frac{\partial H U_{x} U_{x}}{\partial x}-\left.\frac{\partial \bar{\zeta}}{\partial x} \overline{u_{x}} \overline{u_{x}}\right|_{z=\zeta}+\left.\frac{\partial \overline{z_{0}}}{\partial x} \overline{u_{x}} \overline{u_{x}}\right|_{z=z_{0}}

类似,可以得到

\large \int_{z_{0}}^{\zeta} \frac{\partial \overline{u_{x}} \overline{u_{y}}}{\partial y} d z=\frac{\partial H U_{x} U_{y}}{\partial y}-\left.\frac{\partial \bar{\zeta}}{\partial y} \overline{u_{x}} \overline{u_{y}}\right|_{z=\zeta}+\left.\frac{\partial \overline{z_{0}}}{\partial y} \overline{u_{x}} \overline{u_{y}}\right|_{z=z_{0}}

\large \int_{z_{0}}^{\zeta} \frac{\partial \overline{u_{x}} \overline{u_{z}}}{\partial_{z}} d z=\left.\overline{u_{x}} \overline{u_{z}}\right|_{z=\zeta}-\left.\overline{u_{x}} \overline{u_{z}}\right|_{z=z_{0}}

上几式相加,并利用底部及自由表面运动学条件可得

\large \begin{array}{l} \int_{z_{0}}^{\zeta}\left[\frac{\partial \bar{u}_{x}}{\partial t}+\frac{\partial}{\partial x}\left(\bar{u}_{x} \bar{u}_{x}\right)+\frac{\partial}{\partial y}\left(\bar{u}_{x} \bar{u}_{y}\right)+\frac{\partial}{\partial z}\left(\bar{u}_{x} \bar{u}_{z}\right)\right] d z \\ =\frac{\partial H U_{x}}{\partial t}+\frac{\partial H U_{x} U_{x}}{\partial x}+\frac{\partial H U_{x} U_{y}}{\partial y} \end{array}

压力项积分

\large \int_{z_{0}}^{\zeta} \frac{\partial \bar{p}}{\partial x} d z=\frac{\partial}{\partial x} \int_{z_{0}}^{\zeta} \bar{p} d z-\left.\frac{\partial \bar{\zeta}}{\partial x} \bar{p}\right|_{z=\zeta}+\left.\frac{\partial \overline{z_{0}}}{\partial x} \bar{p}\right|_{z=z_{0}}(莱布尼茨公式)

\large \bar{p}=\rho g(\bar{\zeta}-z)代入上式后化简得:

\large \int_{z_{0}}^{\zeta} \frac{\partial \bar{p}}{\partial x} d z=\rho g H \frac{\partial H}{\partial x}+\rho g H \frac{\partial \overline{z_{0}}}{\partial x}=\rho g H \frac{\partial \bar{\zeta}}{\partial x}

扩散项积分

\large \int_{z_{0}}^{\zeta}\left[v_{t}\left(\frac{\partial^{2} \bar{u}_{x}}{\partial x^{2}}+\frac{\partial^{2} \bar{u}_{y}}{\partial y^{2}}+\frac{\partial^{2} \bar{u}_{z}}{\partial z^{2}}\right)\right] d z =v_{t}\left(\frac{\partial^{2} H U_{x}}{\partial x^{2}}+\frac{\partial^{2} H U_{x}}{\partial y^{2}}\right)-g \frac{n^{2} U_{x} \sqrt{U_{x}^{2}+U_{y}^{2}}}{H^{1 / 3}}+C_{w} \frac{\rho_{a}}{\rho} \omega^{2} \cos \beta

上式右边后两项分别为由底部创面阻力和表面风阻力引起的阻力项。式中,\large C_{w}为无因次风应力系数;\large \rho_{a}为空气密度;\large \omega为风速;\large \beta为风向与x方向的夹角。

最后运动方程写成张量形式为

\large \frac{\partial H U_{i}}{\partial t}+\frac{\partial H U_{i} U_{j}}{\partial x_{j}}+g H \frac{\partial \varsigma}{\partial x_{i}}+g \frac{n^{2} U_{i} \sqrt{U_{j}^{2}}}{H^{1 / 3}}=v_{t} \frac{\partial^{2} H U_{i}}{\partial x_{j}^{2}}​​​​​​​

 

 

### 回答1: Matlab是一种广泛使用的数学软件,可以用于求解各种数学问题,包括一维浅水方程。 一维浅水方程是描述水平流动的水流的方程。它是基于质量守恒和动量守恒原理推导得出的,可以用于模拟河流、河道或水槽中的水流行为。 在Matlab中,我们可以使用数值方法来求解一维浅水方程。首先,我们需要将方程离散化,即将连续的物理变量离散为一系列离散点上的数值。然后,可以使用数值解法如有限差分法或有限元法来求解这些离散点上的数值。 在Matlab中,我们可以定义方程中的各个变量,如水深、流速等,并使用合适的数值方法求解。具体步骤包括定义离散网格,初始化水深和流速等初始条件,然后使用数值方法迭代求解离散点上的数值,最后得到数值解。Matlab中提供了各种内置函数和工具包,可以帮助我们进行数值计算和可视化结果。 总之,通过Matlab,我们可以方便地求解一维浅水方程,得到水流的数值解,进而对水流行为进行分析和研究。 ### 回答2: Matlab是一种广泛用于科学和工程计算的编程语言和环境。对于一维浅水方程(one-dimensional shallow water equations),也称为水波方程(wave equation),Matlab提供了强大的数值计算和可视化工具,使得求解和分析这类问题变得相对简单。 一维浅水方程描述了水波在水平方向上传播的动力学行为。该方程是偏微分方程的一种,在Matlab中可以使用差分法或特征线法进行数值求解。差分法将空间域和时间域离散化,转化为一个离散的代数方程组,然后使用线性代数求解方法得到数值解。特征线法则利用特征线的性质,将偏微分方程转化为一组常微分方程,然后使用常微分方程数值方法求解。 在Matlab中使用差分法求解一维浅水方程,可以利用内置的差分算子和求解器函数。首先定义所需的参数,如水深、初始条件、边界条件等。然后,使用差分算子构建离散方程,并将其转化为一个线性代数方程组。最后,使用Matlab的求解器函数(如\,linsolve)求解得到数值解。使用plot函数将结果可视化,可以得到水波在时间和空间上的变化。 此外,Matlab中还提供了丰富的图形函数,可以绘制水面波形图和流场图,帮助用户更直观地理解和分析数值解。同时,Matlab还支持优化算法和参数调整,可以进一步优化求解过程,提高计算效率。 总之,Matlab提供了丰富的工具和函数,可以方便地求解和分析一维浅水方程,帮助用户深入理解水波的传播行为,并为相关科学研究和工程应用提供有效的计算支持。 ### 回答3: 一维浅水方程是描述在水平平面上的水流的数学模型,也称为水动力学方程。Matlab提供了丰富的工具和函数,可以用于求解一维浅水方程。 一维浅水方程的基本形式是: ∂h/∂t + ∂(hu)/∂x = 0 ∂(hu)/∂t + ∂(hu^2 + gh^2/2)/∂x = -g*h*∂(h)/∂x 其中,h是水深,u是流速,g是重力加速度,x是空间坐标,t是时间。 在Matlab中,可以通过数值方法求解一维浅水方程。具体步骤如下: 1. 定义网格点和时间步长。 2. 初始化水深和流速的初始条件。 3. 使用差分格式将一维浅水方程离散化为有限差分方程。 4. 使用循环结构迭代求解离散方程组。 5. 可以根据需要进行结果的可视化和分析。 Matlab中提供了一些常用的求解偏微分方程的函数,如pdepe和pdepeopt,可以使用这些函数方便地求解一维浅水方程。此外,还可以利用Matlab中的画图函数进行结果的可视化,如plot和surf函数。 总而言之,Matlab是一个强大的数值计算工具,可以用于求解一维浅水方程及其它偏微分方程。通过合理选择求解方法和利用Matlab中的函数和工具,可以快速、准确地求解一维浅水方程,并通过可视化结果进行分析和展示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值