K近邻k-nearest neighbors初探
1 KNN的介绍和应用
1.1 KNN的介绍
KNN(k-nearest neighbors),中文翻译K近邻。我们常常听到一个故事:如果要了解一个人的经济水平,只需要知道他最好的5个朋友的经济能力,对他的这五个人的经济水平求平均就是这个人的经济水平。这句话里面就包含着kNN的算法思想。
示例 :如上图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。
1) KNN建立过程
1 给定测试样本,计算它与训练集中的每一个样本的距离。
2 找出距离近期的K个训练样本。作为测试样本的近邻。
3 依据这K个近邻归属的类别来确定样本的类别。
2) 类别的判定
①投票决定,少数服从多数。取类别最多的为测试样本类别。
②加权投票法,依据计算得出距离的远近,对近邻的投票进行加权,距离越近则权重越大,设定权重为距离平方的倒数。
1.2 KNN的应用
KNN虽然很简单,但是人们常说"大道至简",一句"物以类聚,人以群分"就能揭开其面纱,看似简单的KNN即能做分类又能做回归,还能用来做数据预处理的缺失值填充。由于KNN模型具有很好的解释性,一般情况下对于简单的机器学习问题,我们可以使用KNN作为Baseline,对于每一个预测结果,我们可以很好的进行解释。推荐系统的中,也有着KNN的影子。例如文章推荐系统中,对于一个用户A,我们可以把和A最相近的k个用户,浏览过的文章推送给A。
机器学习领域中,数据往往很重要,有句话叫做:“数据决定任务的上限, 模型的目标是无限接近这个上限”。可以看到好的数据非常重要,但是由于各种原因,我们得到的数据是有缺失的,如果我们能够很好的填充这些缺失值,就能够得到更好的数据,以至于训练出来更鲁棒的模型。接下来我们就来看看KNN如果做分类,怎么做回归以及怎么填充空值。
2. 学习目标
- 了解KNN怎么做分类问题
- 了解KNN如何做回归
- 了解KNN怎么做空值填充, 如何使用knn构建带有空值的pipeline
3. 代码流程
- 二维数据集–knn分类
- Step1: 库函数导入
- Step2: 数据导入
- Step3: 模型训练&可视化
- Step4: 原理简析
- 莺尾花数据集–kNN分类
- Step1: 库函数导入
- Step2: 数据导入&分析
- Step3: 模型训练
- Step4: 模型预测&可视化
- 模拟数据集–kNN回归
- Step1: 库函数导入
- Step2: 数据导入&分析
- Step3: 模型训练&可视化
- 马绞痛数据–kNN数据预处理+kNN分类pipeline
- Step1: 库函数导入
- Step2: 数据导入&分析
- Step3: KNNImputer空值填充–使用和原理介绍
- Step4: KNNImputer空值填充–欧式距离的计算
- Step5: 基于pipeline模型预测&可视化
4. KNN原理介绍
k近邻方法是一种惰性学习算法,可以用于回归和分类,它的主要思想是投票机制,对于一个测试实例x, 我们在有标签的训练数据集上找到和最相近的k个数据,用他们的label进行投票,分类问题则进行表决投票,回归问题使用加权平均或者直接平均的方法。knn算法中我们最需要关注两个问题:k值的选择和距离的计算。
kNN中的k是一个超参数,需要我们进行指定,一般情况下这个k和数据有很大关系,都是交叉验证进行选择,但是建议使用交叉验证的时候,k∈[2,20],使用交叉验证得到一个很好的k值。
k值还可以表示我们的模型复杂度,当k值越小意味着模型复杂度变大,更容易过拟合,(用极少数的样例来绝对这个预测的结果,很容易产生偏见,这就是过拟合)。我们有这样一句话,k值越多学习的估计误差越小,但是学习的近似误差就会增大。
距离/相似度的计算:
样本之间的距离的计算,我们一般使用对于一般使用Lp距离进行计算。当p=1时候,称为曼哈顿距离(Manhattan distance),当p=2时候,称为欧氏距离(Euclidean distance),当p=∞时候,称为极大距离(infty distance), 表示各个坐标的距离最大值,另外也包含夹角余弦等方法。
一般采用欧式距离较多,但是文本分类则倾向于使用余弦来计算相似度。
对于两个向量 ( x i , x j ) (x_i,x_j) (xi,xj),一般使用 L p L_p Lp距离进行计算。 假设特征空间 X X X是n维实数向量空间 R n R^n Rn , 其中, x i , x j ∈ X x_i,x_j \in X xi,xj∈X, x i = ( x i ( 1 ) , x i ( 2 ) , … , x i ( n ) ) x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \ldots, x_{i}^{(n)}\right) xi=(xi(1),xi(2),…,xi(n)), x j = ( x j ( 1 ) , x j ( 2 ) , … , x j ( n ) ) x_{j}=\left(x_{j}^{(1)}, x_{j}^{(2)}, \ldots, x_{j}^{(n)}\right) xj=(xj(1),xj(2),…,xj(n))
x i , x j x_i,x_j xi,xj的 L p L_p Lp距离定义为:
L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_{p}\left(x_{i}, x_{j}\right)=\left(\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|^{p}\right)^{\frac{1}{p}} Lp(xi,xj)=(l=1∑n