数仓维度设计模型、事实表、维度表、指标、宽表,常见的三种维度建模设计——星型模型、雪花模型、星座模型

本文介绍了数据仓库中的事实表和维度表,事实表记录现实事件,维度表提供补充信息。维度表分为大型和小型,用于丰富数据细节。星型模型是常见维度建模方式,以事实表为中心,雪花模型则进一步规范化维度表,而星座模型适用于多事实表场景。指标定义了数据分析目标,宽表则整合了事实表和维度表信息,方便业务指标开发。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数仓维度设计模型

事实表

事实表,通常我们可以认为它就是数据表

它是指,发生在现实世界中的各种事件所形成的数据,如:

  • 商品购买(产生订单数据)
  • 账户创建(创建账户数据)
  • 退货行为(产生退货数据)

等等,一系列现实世界的操作,会反映在事实表中的记录之上。

维度表

维度表是事实表的补充。维度表的主键可以关联到事实表的外键之上。

维度表描述的是,现实事件信息的补充。

比如,在事实表中仅仅记录了你购买商品的时间戳,但是维度表可以对这个时间戳进行信息补充,如:

  • 当前日期
  • 当日是周几
  • 当日是否是节假日
  • 当日是第几季度
  • 当日是什么季节
  • 当日是全年第几天

等等的一系列额外数据的补充。

又好比,你订单中购买了商品,在事实表中可能记录的只是商品ID,但是基于维度表(商品细节),可以补充:

  • 商品厂家
  • 商品尺寸
  • 商品类别
  • 进价
  • 有效期
  • 供应商

等等一系列补充。

一般情况下,维度表也会分为:

  • 大型维度表
  • 小型维度表

小型维度表,就是如前面对日期做补充的维度表,这类维度表,一年的日期只需要365行数据,就可以对海量的数据进行补充。

大型维度表,就是如前面对商品做补充的维度表,商品越多,维度表内容越多。通常,大型维度表更会愿意被称为:

  • 字典表
  • 同时对应着,事实表也可以称之为 流水表
  • 那么,字典表就是对流水表里面某一列数据的说明。

指标

指标就是对数据分析的需求,或者说是目标Schema。

比如,某个指标是:月热销商品TOP10,这个指标就是一个目标。

在数仓开发中,开发某个指标,就是针对某个目标进行数据建模、分层、处理。

宽表

宽表是指一种大表,是将事实表和维度表进行合并形成的表。

比如日期维度,将对应的日期维度的列,直接添加到事实表中,或者商品维度的列也同步加入到事实表中。

那么这样事实表的列就非常的多,它所涉及到的维度基本都涵盖在了一张表中,俗称All in one

对于这样的表,就称为宽表

基于宽表,我们可以针对这一个表完成许多业务指标的开发。

常见的三种维度建模设计

星型模型

星形模式(Star Schema)是最常用的维度建模方式。星型模式是以事实表为中心,所有的维度表直接连接在事实表上,像星星一样。

星形模式的维度建模由一个事实表和一组维表成,且具有以下特点:

a. 维表只和事实表关联,维表之间没有关联;

b. 每个维表主键为单列,且该主键放置在事实表中,作为两边连接的外键;

c. 以事实表为核心,维表围绕核心呈星形分布;

在这里插入图片描述

雪花模型

雪花模式(Snowflake Schema)是对星形模式的扩展。雪花模式的维度表可以拥有其他维度表的,虽然这种模型相比星型更规范一些,但是由于这种模型不太容易理解,维护成本比较高,而且性能方面需要关联多层维表,性能也比星型模型要低。所以一般不是很常用。

在这里插入图片描述

星座模型

星座模式是星型模式延伸而来,星型模式是基于一张事实表的,而星座模式是基于多张事实表的,而且共享维度信息。

前面介绍的两种维度建模方法都是多维表对应单事实表,但在很多时候维度空间内的事实表不止一个,而一个维表也可能被多个事实表用到。在业务发展后期,绝大部分维度建模都采用的是星座模式。

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我:yueda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值