三次B样条插值和误差分析

关键字:基函数,控制点,节点

参考:http://www.docin.com/p-1511846558.html 

前言:之前写写过一篇B样条曲线,这篇是原文的深度扩展,是针对B样条曲线的一种特殊情况,三次B样条,讨论了其插值和误差分析,添加了一些个人总结。

思路:根据已知的型值点(就是给出的已知的数据点),采用均匀参数法构造节点矢量,得到基函数的表达形式,然后利用逼近思想构造三对角阵,利用追赶法求控制点,最后拟合。

一、目的和思想

由已知的观测点,为物理量(未知量)建立一个简单的,连续的解析模型,根据该模型推测在非观测点的特性。

B样条相比于分段线性插值,在节点处可导,具有光滑性,这是它的优点。

构造思想在于通过给定的型值点反求出控制点,从而拟合曲线,可以通过更改控制点改变曲线形状。

实际B样条计算的两种情况:第一种就是本文的构造思想(上一行)。第二种是直接给出控制点。

二、定义

2.1 B样条

控制点为Pi(i=0,1,2,....,n),p次B样条曲线方程为

是p次B样条基函数,节点矢量

节点矢量的选取方法为:均匀参数法,积累弦长法,向心参数法(这里选择均匀参数法)

 

注意这里的u是一个点,可能位于的一个数,而不是像的一个向量。

为了将曲线的首末端点分别与首末数据点对应,需要将首末端点都做p+1重,即

注意对于p次样条,有

三、3次B样条基的计算

根据第二条性质,时,

p=3时,

其中每一项分别如下:

四、3次B样条控制点的计算

假设给定一组型值点和节点矢量,首末是四重,即,首末分别与对应。如下图所示,那么内部节点对应。即对应,对应,则r-0+1=m-3-3+1,r=m-6。所以如前文所述,这里控制节点的个数为n+1,因为m=n+p+1,所以m=n+4,那么r=n-2。

那么B样条曲线的方程为

为了求控制点Pi,采用非节点条件,将首末型值点分别对应于参数,使得所取得的参数分别接近于,有

其中

化成三对角矩阵,用追赶法求解

五、B样条曲线误差分析

对于每个小区间上的点u,可以表示为

B样条曲线上一点为,注意这里的P的是二维的,第二个下标表示是第一维度的还是第二维度的。那么

继续化简,

如果分段线性插值上的点为,那么

那么

在每一个区间上,3次B样条曲线与折线段都会有一个或者两个功高,功高可以衡量误差的大小

那么

根为

B样条曲线与折线段出现一个功高,出现两个功高,曲线与折线段有交点,交点参数为曲线上点的斜率与原型点连线斜率相等时功高最大,可以用牛顿切线法找到功高最大点处,计算功高大小,判断插值好坏。

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值