opencv C++ 旋转任意角度图片

摘要:opencv里面似乎没有直接的旋转图片的接口,这里实现一个旋转任意角度的方法,在旋转的时候调用opencv里面的仿射变换函数实现。有两种旋转模式:一种按图片中心旋转,尺寸与原图一致;另外一种模式是扩充图片尺寸以包含所有像素点。

1. 示例:

在这里插入图片描述

2. 原理

旋转平移的坐标变换

设有任意一点 p , 在 平 面 直 角 坐 标 中 其 坐 标 为 ( x , y ) , 在 平 面 极 坐 标 系 中 其 坐 标 为 ( ρ , θ ) p,在平面直角坐标中其坐标为(x,y), 在平面极坐标系中其坐标为(\rho,\theta) p(x,y),(ρ,θ),则根据坐标系转换公式有
{ x = ρ ∗ c o s θ y = ρ ∗ s i n θ \begin{cases} x = \rho * cos\theta \\ y = \rho * sin\theta \end{cases} {x=ρcosθy=ρsinθ
在这里 x , y ∈ [ − ∞ , ∞ ] , ρ ∈ [ 0 , ∞ ] , θ ∈ [ 0 , 2 π ) x,y \in [-\infty,\infty], \rho \in[0,\infty], \theta \in [0,2\pi) x,y[,],ρ[0,],θ[0,2π). 假设对 p p p点对应的极径 o p ‾ 逆 时 针 旋 转 α 弧 度 \overline{op} 逆时针旋转\alpha弧度 opα得到 o p ′ ‾ \overline{op'} op,则 p ′ p' p点的坐标为
{ x ′ = ρ ∗ c o s ( θ + α ) = ρ ∗ c o s θ ∗ c o s α − ρ ∗ s i n θ ∗ sin ⁡ α = x ∗ c o s α − y ∗ s i n α y ′ = ρ ∗ s i n ( θ + α ) = ρ ∗ s i n θ ∗ c o s α + ρ ∗ c o s θ ∗ sin ⁡ α = y ∗ c o s α + x ∗ s i n α \begin{cases} x' &= \rho * cos(\theta + \alpha)\\ &=\rho * cos\theta *cos\alpha -\rho*sin\theta*\sin\alpha\\ &= x*cos\alpha - y*sin\alpha\\ \\ y' &= \rho * sin(\theta + \alpha)\\ &=\rho * sin\theta *cos\alpha + \rho*cos\theta*\sin\alpha\\ &= y*cos\alpha + x*sin\alpha\\ \end{cases} xy=ρcos(θ+α)=ρcosθcosαρsinθsinα=xcosαysinα=ρsin(θ+α)=ρsinθcosα+ρcosθsinα=ycosα+xsinα
再在直角坐标系中按向量 ( T x , T y ) (Tx,Ty) (Tx,Ty)平移 p ′ p' p p ′ ′ p'' p,则 p ′ ′ p'' p的坐标为
{ x ′ ′ = x ′ + T x = x ∗ c o s α − y ∗ s i n α + T x y ′ ′ = y ′ + T y = y ∗ c o s α + x ∗ s i n α + T y \begin{cases} x''&=x'+Tx\\ &=x*cos\alpha - y*sin\alpha+Tx \\\\ y''&=y'+Ty\\ &=y*cos\alpha + x*sin\alpha+Ty \end{cases} xy=x+Tx=xcosαysinα+Tx=y+Ty=ycosα+xsinα+Ty
转为矩阵形式为
[ x ′ ′ y ′ ′ ] = [ cos ⁡ α − s i n α T x s i n α cos ⁡ α T y ] ⋅ [ x y 1 ] \begin{bmatrix} x'' \\ y'' \end{bmatrix} = \begin{bmatrix} \cos\alpha & -sin\alpha &Tx\\ sin\alpha &\cos\alpha &Ty \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} [xy]=[cosαsinαsinαcosαTxTy]xy1
也就是说只要知道仿射变换矩阵,那么每一个像素点(x,y)都可以用上面的公式直接计算了。

3. 两种方式

  • 方式一
    从仿射变换矩阵 [ cos ⁡ α − s i n α T x s i n α cos ⁡ α T y ] \begin{bmatrix} \cos\alpha & -sin\alpha &Tx\\ sin\alpha &\cos\alpha &Ty \end{bmatrix} [cosαsinαsinαcosαTxTy]看,参数有3个: α , T x , T y \alpha,Tx,Ty α,Tx,Ty,如果有把它们都看成未知数,那么只要有三个独立的方程就可以解出仿射变换矩阵,对应实际的情况就是不共线的三个点。而opencv中提供了一个函数cv::getAffineTransform,只需要输入三个对应点对就可以得到仿射变换矩阵,然后用cv::warpAffine进行变换。这种方式主要是因为矩形的角点很容易计算,只需要计算三个点就可以得到变换矩阵。
  • 方式二
    直接构造仿射变换矩阵,角度已知,只需要求平移量,而平移量就是“最负”的点的坐标值,因为负数坐标的地方不显示,加上一点偏移使得所有坐标为负的点都变为正的。

4. 源码


#include <iostream>
#include<algorithm>
#include "opencv.hpp"

int rotateImage(const cv::Mat &src, cv::Mat &dst, const double angle, const int mode)
{
	//mode = 0 ,Keep the original image size unchanged
	//mode = 1, Change the original image size to fit the rotated scale, padding with zero

	if (src.empty())
	{
		std::cout << "Damn, the input image is empty!\n";
		return -1;
	}

	if (mode == 0)
	{
		cv::Point2f center((src.cols - 1) / 2.0, (src.rows - 1) / 2.0);
		cv::Mat rot = cv::getRotationMatrix2D(center, angle, 1.0);
		cv::warpAffine(src, dst, rot, src.size());//the original size
	}
	else {

		double alpha = -angle * CV_PI / 180.0;//convert angle to radian format 

		cv::Point2f srcP[3];
		cv::Point2f dstP[3];
		srcP[0] = cv::Point2f(0, src.rows);
		srcP[1] = cv::Point2f(src.cols, 0);
		srcP[2] = cv::Point2f(src.cols, src.rows);
		
		//rotate the pixels
		for (int i=0;i<3;i++)
					dstP[i] = cv::Point2f(srcP[i].x*cos(alpha) - srcP[i].y*sin(alpha), srcP[i].y*cos(alpha) + srcP[i].x*sin(alpha));
		double minx, miny, maxx, maxy;
		minx = std::min(std::min(std::min(dstP[0].x, dstP[1].x), dstP[2].x),float(0.0));
		miny  = std::min(std::min(std::min(dstP[0].y, dstP[1].y), dstP[2].y),float(0.0));
		maxx = std::max(std::max(std::max(dstP[0].x, dstP[1].x), dstP[2].x),float(0.0));
		maxy = std::max(std::max(std::max(dstP[0].y, dstP[1].y), dstP[2].y),float(0.0));

		int w = maxx - minx;
		int h = maxy - miny;

		//translation
		for (int i = 0; i < 3; i++)
		{
			if (minx < 0)
				dstP[i].x -= minx;
			if (miny < 0)
				dstP[i].y -= miny;
		}

		cv::Mat warpMat = cv::getAffineTransform(srcP, dstP);
		cv::warpAffine(src, dst, warpMat, cv::Size(w, h));//extend size

	}//end else

	return 0;
}

int rotateImage2(const cv::Mat &src, cv::Mat &dst, const double angle, const int mode)
{
	//mode = 0 ,Keep the original image size unchanged
	//mode = 1, Change the original image size to fit the rotated scale, padding with zero

	if (src.empty())
	{
		std::cout << "Damn, the input image is empty!\n";
		return -1;
	}

	if (mode == 0)
	{
		cv::Point2f center((src.cols - 1) / 2.0, (src.rows - 1) / 2.0);
		cv::Mat rot = cv::getRotationMatrix2D(center, angle, 1.0);
		cv::warpAffine(src, dst, rot, src.size());//the original size
	}
	else {

		double alpha = -angle * CV_PI / 180.0;//convert angle to radian format 

		cv::Point2f srcP[3];
		cv::Point2f dstP[3];
		srcP[0] = cv::Point2f(0, src.rows);
		srcP[1] = cv::Point2f(src.cols, 0);
		srcP[2] = cv::Point2f(src.cols, src.rows);

		//rotate the pixels
		for (int i = 0; i < 3; i++)
			dstP[i] = cv::Point2f(srcP[i].x*cos(alpha) - srcP[i].y*sin(alpha), srcP[i].y*cos(alpha) + srcP[i].x*sin(alpha));
		double minx, miny, maxx, maxy;
		minx = std::min(std::min(std::min(dstP[0].x, dstP[1].x), dstP[2].x), float(0.0));
		miny = std::min(std::min(std::min(dstP[0].y, dstP[1].y), dstP[2].y), float(0.0));
		maxx = std::max(std::max(std::max(dstP[0].x, dstP[1].x), dstP[2].x), float(0.0));
		maxy = std::max(std::max(std::max(dstP[0].y, dstP[1].y), dstP[2].y), float(0.0));

		int w = maxx - minx;
		int h = maxy - miny;

		cv::Mat warpMat =cv::Mat::zeros(cv::Size(3,2),CV_64F);//rows=2,cols=3
		
		std::cout << warpMat.type() << std::endl;
		std::cout << warpMat.size()<<std::endl;
		warpMat.at<double>(0, 0) = cos(alpha);
		warpMat.at<double>(0, 1) = 0- sin(alpha);
		warpMat.at<double>(1, 0) = sin(alpha);
		warpMat.at<double>(1, 1) = cos(alpha);
		warpMat.at<double>(0, 2) =0- minx;
		warpMat.at<double>(1, 2) =0-miny;
		//std::cout << warpMat;
		cv::warpAffine(src, dst, warpMat, cv::Size(w, h));//extend size

	}//end else

	return 0;
}

int main()
{
    std::cout << "Hello World!\n";
	std::string filePath = "K:\\imageData\\lena\\images.png";
	cv::Mat src = cv::imread(filePath);
	cv::Mat dst1,dst2;
	for (double i = -360; i <= 360; i++)
	{
		int flg1 = rotateImage(src, dst1, i, 0);
		int flg2 = rotateImage(src, dst2, i, 1);
		if (flg1 == -1 || flg2 == -1) continue;
		cv::imshow("src", src);
		cv::imshow("dst1", dst1);
		cv::imshow("dst2", dst2);
		cv::waitKey(5);
	}
	cv::waitKey(0);
	cv::destroyAllWindows();

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值