凸函数

1.定义
2.保凸运算
3.保凸算子
4.凸优化问题
5.借助拉格朗日函数做优化
6.凸函数的满足条件及常见例子

1.定义:
在了解凸函数之前,我们需要先了解一下仿射集:
仿射集(Affine set):通过 集合C中任意两不同点的直线仍在集合C内,我们则称集合C为仿射集.如:直线,平面
数学表达:设x1,x2为定义在集合C中任两个不同点,即x1≠x2且x1,x2 ϵ \epsilon ϵ C , θ ϵ \epsilon ϵ R,对θ均有 θ x 1 + ( 1 − θ ) x 2 ϵ C \theta _{x1}+(1-\theta ) x_{2} \epsilon C θx1+(1θ)x2ϵC ,则C为仿射集.
凸集:若要求θ ϵ \epsilon ϵ [0,1],则C为凸集.
由上述可知,仿射集必为凸集.

2.保凸运算:
a.两凸集的交集仍为凸集
b.仿射交换即为线性交换
c.透视交换
d.投射交换

3.保凸算子:
凸函数的非负加权和
凸函数和仿射函数的复合
凸函数的逐点最大值,逐点上确界(逐点最大值和逐点最小值的几何意义:在平面上画N条直线(凸集),在每个x处取这些直线的最大值,构成的新函数也是凸函数)
f(x) = max(f1(x),f2(x),fk(x)…fn(x))
f(x) = sup g(x,y)

4.凸优化问题:
minimize f0(x), x ϵ \epsilon ϵ R, (优化变量)
s.t. fi(x)<=0,i=1,2…m
hj(x)<=0,j=1,2…n
其中,
fi(x)为凸函数,是不等式约束
hj(x)为仿射函数,是等式约束

凸优化的可行域为凸集,凸优化的局部最优解即为全局最优解

5.借助拉格朗日函数来做优化:
原函数:
minimize f0(x), x ϵ \epsilon ϵ R, (优化变量)
s.t. fi(x)<=0,i=1,2…m
hj(x)<=0,j=1,2…n

Lagrange函数:
L ( x , λ , v ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ j = 1 n v j h j ( x ) L(x,\lambda ,v) = f _{0}(x) + \sum_{i=1}^{m}\lambda _{i}f_{i}(x) + \sum_{j=1}^{n}v_{j}h_{j}(x) L(x,λ,v)=f0(x)+i=1mλifi(x)+j=1nvjhj(x)

Lagrange对偶函数:
g ( λ , v ) = i n f ( L ( x , λ , v ) ) = i n f ( f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ j = 1 n v j h j ( x ) ) g(\lambda ,v)=inf(L(x,\lambda ,v)) = inf(f _{0}(x) + \sum_{i=1}^{m}\lambda _{i}f_{i}(x) + \sum_{j=1}^{n}v_{j}h_{j}(x)) g(λ,v)=inf(L(x,λ,v))=inf(f0(x)+i=1mλifi(x)+j=1nvjhj(x))

6.凸函数:
若一函数满足:
a.定义域是凸集
b. f ( a 1 x 1 + a 2 x 2 ) ≤ a 1 f ( x 1 ) + a 2 f ( x 2 ) f(a_{1}x_{1}+a_{2}x_{2})\leq a_{1}f(x_{1})+a_{2}f(x_{2}) f(a1x1+a2x2)a1f(x1)+a2f(x2) 其中, ∑ a 1 = 1 , a i ≥ 0 \sum a_{1}=1,a_{i}\geq 0 a1=1,ai0
则该函数为凸函数
常见的凸函数有:
指数函数
幂函数
负对数函数
负熵函数
范数
最大值函数

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值