凸集与凸函数

凸集

D ⊂ R n D\subset R^n DRn ∀ x , y ∈ D \forall x,y\in D x,yD
λ x + ( 1 − λ ) y ∈ D , ∀   0 ≤ λ ≤ 1 \lambda x+(1-\lambda)y\in D,\forall \ 0\leq \lambda\leq 1 λx+(1λ)yD, 0λ1
即连接任意 D D D上两点的直线段上的所有点也在 D D D内。

性质

两个凸集的交、和、差、线性组合也是凸集。

凸集的任意有限个点的图组合仍属于凸集。

定理

投影定理

y ∉ D y\notin D y/D,存在唯一的点 x ‾ ∈ D \overline x\in D xD,使得 y y y x ‾ \overline x x的连线是 y y y D D D的最短距离,即
∣ ∣ x ‾ − y ∣ ∣ = inf ⁡ x ∈ D ∣ ∣ x − y ∣ ∣ ||\overline x-y||=\inf_{x\in D} ||x-y|| xy=xDinfxy
D D D内其他任意一点 x x x y y y的向量与 x ‾ \overline x x y y y的向量内积 > 0 >0 >0,即成锐角,
( x − x ‾ ) T ( x ‾ − y ) ≤ 0 , ∀ x ∈ D (x-\overline x)^T(\overline x-y)\leq 0,\forall x\in D (xx)T(xy)0,xD

点与凸集分离定理

x ∈ D , y ∉ D x\in D,y\notin D xD,y/D,存在非零向量 a ∈ R n a\in R^n aRn和实数 β \beta β
a T x ≤ β < a T y a^Tx\leq \beta<a^Ty aTxβ<aTy
将向量内积视为投影,约掉 ∣ a ∣ |a| a,相当于比较 x , y x,y x,y a a a上投影的长度。

在这里插入图片描述

F a r k a s \rm Farkas Farkas引理

A m × n , b ∈ R m A_{m\times n},b\in R^m Am×n,bRm,下列两组方程有且仅有一组有解:
∃ x ∈ R n ,   s . t . A x = b ,   x ≥ 0 \exist x\in \R^n, \ s.t. Ax=b, \ x\geq 0 xRn, s.t.Ax=b, x0

∃ y ∈ R m , s . t . A T y ≥ 0 , b T y < 0 \exist y\in R^m,s.t. A^Ty\geq 0, b^Ty<0 yRm,s.t.ATy0,bTy<0

A x = a 1 x 1 + a 2 x 2 + ⋯ + a n x n ( x i ≥ 0 ) Ax=a_1x_1+a_2x_2+\cdots+a_nx_n(x_i\geq 0) Ax=a1x1+a2x2++anxn(xi0)的所有取值情况想象成由 m m m维列向量 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an张成的凸锥,上述两个方程描述的事实上是 m m m维向量 b b b在凸锥内或凸锥外的两种情况。

  • b b b在凸锥内部,则必然可以由 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an线性表示,即存在一组 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn,使得 b = A x = a 1 x 1 + a 2 x 2 + ⋯ + a n x n ( x i ≥ 0 ) b=Ax=a_1x_1+a_2x_2+\cdots+a_nx_n(x_i\geq 0) b=Ax=a1x1+a2x2++anxn(xi0).
  • b b b在凸锥外部,则必存在一个经过原点的超平面 h h h分割了凸锥和 b b b。取 h h h引向凸锥一侧的法向量 y y y,易得 a i T y ≥ 0 a_i^Ty\geq 0 aiTy0,则 A T y ≥ 0 A^Ty\geq 0 ATy0。由于 b b b y y y异侧,所以 b T y < 0 b^Ty<0 bTy<0

在这里插入图片描述

支撑超平面定理

D D D为非空集合
H x ‾ = { x ∈ R n ∣ a T ( x ‾ − x ) = 0 } , x ‾ ∈ δ D H_{\overline x}=\{x\in R^n|a^T(\overline x-x)=0\},\overline x\in \delta D Hx={xRnaT(xx)=0},xδD
这里的支撑超平面也就是 D D D的切平面。

非空凸集在其边界点处存在支撑超平面。对非空凸集 D D D,存在非零向量 a ∈ R n a\in R^n aRn
a T x ≤ a T x ‾ , ∀ x ∈ D ‾ ( D 的 闭 包 ) a^Tx\leq a^T\overline x,\forall x\in \overline D(D的闭包) aTxaTx,xD(D)
在这里插入图片描述

两个凸集的分离定理

D 1 , D 2 D_1,D_2 D1,D2为非空凸集, D 1 ∩ D 2 = ∅ D_1\cap D_2=\empty D1D2=,存在超平面分离两个非空凸集,即存在非零向量 a ∈ R n a\in R^n aRn,使得
a T x ≤ a T y , ∀ x ∈ D ‾ 1 , ∀ y ∈ D ‾ 2 a^Tx\leq a^Ty,\forall x\in \overline{D}_1,\forall y\in \overline{D}_2 aTxaTy,xD1,yD2
D 1 − D 2 D_1-D_2 D1D2视作新的凸集,利用无交证明不包含零向量,应用支撑超平面定理易证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值