欧几里得算法及其扩展

欧几里得算法 求最大公约数GCD:

辗转相除引理:
设数a,b(a>b),可得:

gcd(a,b)=gcd(b,a%b)

  • 证明

设 c=gcd(a,b)
可得 a=xc, b=yc (x,y互质)
又a%b=a-(a/b)*b
其中设q=a/b,上式变为 :a%b=a-qb=xc-q*(yc)
化简为:a%b= (x-qy) c
只需证:y与(x-qy)互质即得证
反证法:
设 y与(x-qy)不互质,即有存在 k=gcd(y,x-qy)>1
可表示为:y=km ;x-qy=kn
把y带入,可得 x-q(km)=kn
可得:x=k(n+qm)
此时我们发现 ,x,y不互质,矛盾

故得证

- 实现

int gcd(int a,int b){  
    return b?gcd(b,a%b):a;  
}  

扩展欧几里得

引理:

对a,b ,一定存在整数x,y使得 ax+by=gcd(a,b)

  • 证明:

当 b=0 时,gcd(a,b)=a,此时 x=1 , y=0
当 b!=0 时,
设 ax1+by1=gcd(a,b)=gcd(b,a%b)=bx2+(a%b)y2
又因 a%b=a-a/b*b
则 ax1+by1=bx2+(a-a/b*b)y2
化简得:ax1+by1=ay2+b(x2-a/b*y2)
解得 x1=y2 , y1=x2-a/b*y2
因为当 b=0 时存在 x , y 为最后一组解
解 x , y 必然存在
得证

- 实现

void gcd(int a, int b, int &d, int &x, int &y)
{
    if(!b) { d = a; x = 1; y = 0; }
    else { gcd(b, a%b, d, y, x); y -= x*(a/b); }
}
  • x,y通解形式
    对ax+by=gcd(a,b)
    设t(整数),可得:a(x+bt)+b(y-at)=gcd(a,b)

  • 不定方程通解
    求x,y满足:ax+by=c
    在求得 ax0+by0=gcd(a,b) 带入通解 两边乘以 c/gcd(a,b)
    x=x0+bt/gcd(a,b)
    y=y0-at/gcd(a,b)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值