Fibonacci Again(HDU-1021)


1 题意

  已知 f ( 1 ) = 7 , f ( 2 ) = 11 , f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(1)=7,f(2)=11, f(n) = f(n - 1) + f(n - 2) f(1)=7,f(2)=11,f(n)=f(n1)+f(n2),问 f ( n ) f(n) f(n)是否能被 3 3 3整除,其中 1 ⩽ n ⩽ 1 0 6 1 \leqslant n \leqslant 10^{6} 1n106
  链接:link


2 思路

  原题可转化为:已知 f ( 1 ) = 1 , f ( 2 ) = 2 , f ( n ) = ( f ( n − 1 ) + f ( n − 2 ) )   m o d   3 f(1)=1,f(2)=2, f(n) = (f(n - 1) + f(n - 2)) \ mod \ 3 f(1)=1,f(2)=2,f(n)=(f(n1)+f(n2)) mod 3,问 f ( n ) f(n) f(n)是否为 0 0 0,其中 1 ⩽ n ⩽ 1 0 6 1 \leqslant n \leqslant 10^{6} 1n106
  这样,这道题就转化成了HDU-1005,可以用循环节或矩阵快速幂来解题。

2.1 循环节

  参考:link

2.1.1 时间复杂度分析

  1. 计算前 11 11 11项的时间复杂度为 O ( 11 ) \mathcal{O}(11) O(11)
  2. 0 ⩽ n ⩽ 8 0 \leqslant n \leqslant 8 0n8寻找 f ( n ) = f ( 9 ) , f ( n + 1 ) = f ( 10 ) f(n) = f(9),f(n+1) = f(10) f(n)=f(9),f(n+1)=f(10)的时间复杂度为 O ( 9 ) \mathcal{O}(9) O(9)
  3. 计算 f ( n ) f(n) f(n)的时间复杂度为 O ( 1 ) \mathcal{O}(1) O(1)

  总的时间复杂度为 O ( 11 ) \mathcal{O}(11) O(11)

2.1.1 代码

#include<iostream>
#include<cstdio>
using namespace std;
int a[11]={7,11},n;
int main(){
    int step,first;
    for(int i=2;i<=10;i++) a[i]=(a[i-1]+a[i-2])%3;
    for(int i=0;i<=8;i++){
        if(a[9]==a[i]&&a[10]==a[i+1]){
            first=i;
            break;
        }
    }
    step=9-first;
    while(~scanf("%d",&n)){
        int res=n<9?a[n]:a[(n-first)%step+first];
        if(res==0) puts("yes");
        else puts("no");
    }
    return 0;
}

2.2 矩阵快速幂

  关于矩阵快速幂的详细介绍请参考:link
  这道题的矩阵快速幂的公式为: [ f ( n ) f ( n − 1 ) ] = [ 1 1 1 0 ] n − 1 [ f ( 1 ) f ( 0 ) ] \left[\begin{array}{c} f(n) \\ f(n-1) \end{array}\right]=\left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right]^{n-1}\left[\begin{array}{c} f(1) \\ f(0) \end{array}\right] [f(n)f(n1)]=[1110]n1[f(1)f(0)]

2.2.1 时间复杂度分析

  矩阵快速幂的时间复杂度为 O ( m 3 log ⁡ ( n ) ) \mathcal{O}(m^{3}\log(n)) O(m3log(n)),其中 m m m为矩阵大小, n n n为幂指数。
  对于这道题来说,时间复杂度为 O ( 8 log ⁡ ( n ) ) \mathcal{O}(8\log(n)) O(8log(n))

2.2.2 代码

#include<iostream>
#include<cstdio>
using namespace std;
const int MAXN=15;
const int MOD=3;
int n,sz=2;
struct Matrix{
    int dt[MAXN][MAXN];
    Matrix(int tp=0){
        for(int i=1;i<=sz;i++){
            for(int j=1;j<=sz;j++){
                if(i==j) dt[i][j]=tp;
                else dt[i][j]=0;
            }
        }
    }
    Matrix operator+(const Matrix& a){
        Matrix res;
        for(int i=1;i<=sz;i++){
            for(int j=1;j<=sz;j++){
                res.dt[i][j]=(dt[i][j]+a.dt[i][j])%MOD;
            }
        }
        return res;
    }
    Matrix operator-(const Matrix& a){
        Matrix res;
        for(int i=1;i<=sz;i++){
            for(int j=1;j<=sz;j++){
                res.dt[i][j]=(dt[i][j]-a.dt[i][j])%MOD;
            }
        }
        return res;
    }
    Matrix operator*(const Matrix& a){
        Matrix res;
        for(int i=1;i<=sz;i++){
            for(int j=1;j<=sz;j++){
                for(int k=1;k<=sz;k++){
                    res.dt[i][j]=(res.dt[i][j]+dt[i][k]*a.dt[k][j])%MOD;
                }
            }
        }
        return res;
    }
};
Matrix qpow(const Matrix& a,int b){
    Matrix res(1),rem=a;
    while(b){
        if(b&1) res=res*rem;
        rem=rem*rem;
        b>>=1;
    }
    return res;
}
int main(){
    while(~scanf("%d",&n)){
        if(n==0){
            puts("no");
            continue;
        }
        Matrix mat;
        mat.dt[1][1]=1;mat.dt[1][2]=1;
        mat.dt[2][1]=1;
        Matrix res=qpow(mat,n-1);
        if((res.dt[1][1]*2+res.dt[1][2]*1)%3==0) puts("yes");
        else puts("no");
    }
    return 0;
}

2.3 算法比较

  从最坏的时间复杂度来看,循环节更具有优势,因为循环节最多计算 11 + 9 + 1 = 21 11+9+1=21 11+9+1=21次,而矩阵快速幂要计算 2 3 × log ⁡ ( 1 0 6 ) = 159 2^{3} \times \log(10^{6}) = 159 23×log(106)=159次。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值