原文:How Deep Learning Gives Us a Precise Picture of All the Water on Earth
摘要:水位可以指示下一个将经历政治动荡或气候变化最严重的地区。Orbital Insight通过将深度学习应用于卫星图像来监测它们。
利用人工智能技术对搜集到的卫星图像进行检查,以获取世界各地精确的水位以及它们每周的变化。
将landsat7/8免费卫星图像输入神经网络,以精确定位地表水的位置及其面积。
该小组首先对数千张图像进行人工分类,找出清晰、准确标记的水样本,然后利用它们训练神经网络,这个神经网络可以一个像素一个像素地标记水像素。因此,这个神经网络模型特别擅长分辨水和非水,而其他水探测系统可能会将云或山的阴影识别为水。
利用该水位数据可以调查洪水事件的范围,跟踪全年气候变化和水位变化...

Orbital Insigh每周给世界的水体做标签。
加利福尼亚大学伯克利分校Citris智能水基础设施和适应性城市倡议的负责人史蒂文·格拉泽指出,大多数水模型都是基于过去50年的数据,它们可能很快会过时。随着气候变化,这些模型会变得越来越没有意义。我们搜集的信息越多,我们就会建立更好的模型。
当你可以监测可用水量,你可以建立一个良好的框架来考虑水权问题。