论文笔记(八):基于深度学习的高分遥感影像水体提取模型研究(地理与地理信息科学)

摘要

        从高分辨率卫星遥感影像中提取水体对于水体监测和管理具有重要意义,而阴影和建筑物的干扰制约了水 体提取的精度。该文分别利用卷积神经网络和Deeplabv3语义分割神经网络,开展了高分辨率卫星遥感数据水体 提取研究,探讨深度学习在水体提取中的应用能力。首先,以高分辨率卫星遥感影像为数据源,分别建立水体分类 数据集和水体语义分割数据集,构建并训练卷积神经网络及Deeplabv3网络,得到最优的两种水体提取模型,进一 步利用同一测试集对两种模型和其他方法进行精度评价。结果表明,卷积神经网络、Deeplabv3方法精度分别达到 95.09%和92.14%,均高于水体指数法、面向对象法和支持向量机法;而且该两种深度学习方法都能够有效去除阴 影和建筑物的影响,说明了深度学习方法的有效性,其中,卷积神经网络的适用性更好。

数据源

        本文研究区域以长江中下游为主,该区域水资源丰富、地形多样、城市分布密集。遥感影像采用高 分一号卫星(GF-1)影像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值