这篇文章分为两部分:
1.pandas的函数使用
2.pandas的缺失值处理
第一部分:pandas的函数使用
使用numpy函数可以直接生成DataFrame
df = pd.DataFrame(np.random.randn(5,4) - 1)
print(df)
print(np.abs(df))
结果:
0 1 2 3
0 -1.193139 -4.145649 -1.571923 -0.378310
1 -1.346353 0.574261 -0.064639 -0.208498
2 -0.247680 -0.896988 0.532693 0.216936
3 -0.887787 -2.009084 -1.221057 -1.455613
4 -0.567156 -1.625967 0.297832 -2.785613
0 1 2 3
0 1.193139 4.145649 1.571923 0.378310
1 1.346353 0.574261 0.064639 0.208498
2 0.247680 0.896988 0.532693 0.216936
3 0.887787 2.009084 1.221057 1.455613
4 0.567156 1.625967 0.297832 2.785613
通过apply函数可以将每行或者每列数据应用到函数上
数据应用到函数上
每行或者每列数据应用到函数上
f = lambda x : x.max(