TensorFlow&NLP | 使用tf.keras自定义模型建模后model.summary()中Param的计算过程

摘要

当我们使用TensorFlow2.0中keras.layers API进行自定义模型组网时,我们可以通过使用 model.summary()来输出模型中各层的一些信息。输出的图中包含了3列信息,第一列为各层的名称(层的类型,在tf.keras.layers中定义好了);第二层为数据经过每层之后,输出的数据维度;第三列为当前层中共有多少个参数。

由于已经有一些讲得较为清楚的博客提到了这些内容,比如:
详解keras的model.summary()输出参数Param计算过程
该博客中主要讲述了 基础神经网络CNN(2维卷积) 中的Param计算过程,这篇文章中就不再赘述了。我们重点来探讨一下当我们使用 CNN(1维卷积)模型对 NLP任务 进行建模时,model.summary() 的展示结果中Param的计算过程。

代码演示

以下是使用自定义模型方式完成的demo,仅供参考

# to show the whole model.summary(), especially the part of output shape
from tensorflow import keras
from tensorflow.keras import layers as klayers

class MLP(keras.Model):
    def __init__(self, input_shape, **kwargs):
        super(MLP, self).__init__(**kwargs)
        # Add input layer
        self.input_layer 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值