From Skepticism to Acceptance: Simulating the Attitude Dynamics Toward Fake News

 https://arxiv.org/pdf/2403.09498

目录

摘要

绪论

Method

问题形式化

模拟框架

动态观点 Agent

Agent 交互模拟器

Experiments

实施细节

评价指标

宏观层面的观察


摘要

        该论文提出了一个基于大型语言模型(LLM)的虚假新闻传播模拟框架(FPS),旨在详细研究虚假新闻传播的趋势和控制;

        该框架中的每个Agent代表一个个体,具有独特的个性,并配备了短期和长期记忆以及反思机制,以模仿人类的思维;

        Agent每天进行随机的意见交流,反思自己的想法,并更新他们的意见;

        模拟结果揭示了虚假新闻传播中与主题相关性和个体特征相关的模式,这与现实世界的观察结果相符;

        该论文还评估了各种干预策略,表明早期和适当频繁的干预可以在治理成本和有效性之间取得平衡,为实际应用提供了有价值的见解;

绪论

        该论文的绪论部分主要讨论了在线社交媒体上虚假信息的传播及其控制;

        在线社交媒体以其便捷和低成本的特性,促进了信息的快速传播。然而,其广泛使用也导致了虚假信息的传播,引发全球恐慌,因此控制虚假信息至关重要。

        以2016年美国总统选举为例,虚假新闻约占新闻消费总量的6%。这个问题不仅限于政治领域,还延伸到股票市场,恐怖袭击,以及自然灾害后的反应;

        为了研究虚假信息传播背后的机制,已经开发了多种建模方法。

        从宏观层面来看,有研究将人群分为易感人群和受感染人群,并定义了每个群体的转换概率,以模拟宏观层面的传播机制。

        从微观层面来看,有研究定义了数值条件,以确定每个人是否会改变他们的观点。然而,这些模型通常依赖于意见和信息的数值表示这种简化方法无法捕捉到现实生活中复杂的语言细微差别。例如,关于一个话题的复杂推理过程、想法和观点不应仅仅被简化为一个情感分数。此外,具有不同人格特征的个体对同一主题有不同的反应,这些反应无法用这些数值模型准确地表示;

        该论文提出了一个基于LLM的虚假新闻传播模拟框架(FPS),该框架具有以下优点:

        FPS允许模拟具有不同角色和背景的用户,使研究人员能够研究不同的行为模式;

        基于LLM的模拟有效地复制了虚假新闻的文本性质、复杂的人类推理和动态的观点转变,从而提高了可解释性;

        基于LLM的模拟的可扩展性使得能够分析跨不同场景和人口群体的虚假新闻传播,从而提供广泛而有价值的见解;

Method

        该论文的 Method 部分主要介绍了如何构建一个基于大型语言模型(LLM)的虚假新闻传播模拟框架(FPS),用于研究个体和群体层面上的虚假信息传播动态。FPS 框架包含两个主要组成部分:动态观点 Agent(DOA)和 Agent 交互模拟器(AIS)

问题形式化

        构建一个包含 N 个 LLM agent 的模拟环境,表示为 A = (a1, ..., aN),以及一个虚假新闻主题 F;

        初始化时,每个 agent 都有一个独特的 persona,包括他们对虚假新闻的初始态度;

        在第 t 天,每个 agent ai 将随机与池 A 中的 c 个其他 agent 交互;

        在一天结束时,每个 agent 反思交流的信息,并决定是否相信虚假新闻;

        这个过程迭代 T 天。通过这些每日迭代,agent 的观点被积累起来,以绘制不同人群的轨迹,从而生成一条曲线,说明虚假新闻在网络中的动态;

        此外,该论文还仔细研究了 agent 信仰的演变,以检验个体和集体观点如何随时间变化

模拟框架

        动态观点 Agent (DOA):模拟每个 agent 的认知过程。每个 agent 的决策由 LLM 提供支持,并具有预定义的角色,包括教育程度、性别和性格特征等属性。每天,agent 与同伴进行讨论,反思这些互动,并相应地调整他们对虚假新闻的看法;

        Agent 交互模拟器 (AIS):构建交互环境,规划 agent 之间的遭遇,确定哪些 agent 交互以及每天这些交互的频率。此外,在发布官方公告以澄清虚假新闻的情况下,AIS 负责分发此信息。在每天结束时,模拟向前推进一步,并更新 agent 的信仰状态。

动态观点 Agent

        DOA 关注微观层面,可以详细研究每个 agent 观点的动态:

        Persona:随机为每个 agent 分配 persona p_i,包括姓名、年龄、特征和教育程度,因为这些是可能影响他们对虚假新闻态度的因素。在设计 traits 时,遵循 Big 5 trait 模型。该模型因其在封装关键人格维度方面的有效性而得到广泛认可。

        双重记忆 (Dual Memory):考虑到个人的观点不仅受自身信仰的影响,还受到与他人互动的影响,因此实现了双重记忆系统。

        长期记忆 (mli):压缩并存储过去互动的摘要历史;

        短期记忆 (msi):反映并总结当天的对话;

        在每天结束时,agent 会反思这些互动,从而使他们的观点能够发展,短期记忆在每天结束时被清除,以适应新的互动,这种方法在保留关键历史背景和管理每日互动数据量之间实现了平衡。

        这种方法在保留关键历史背景和管理每日互动数据量之间实现了平衡。

        推理观点 (Reasoning for Opinion):使用文本描述来模拟每个人对虚假新闻的看法,从而提供更丰富和更细致的解释。

                Agent 意见表达:采用 tweet 格式表达他们的观点,因为初步实验表明,这种格式鼓励简洁和精确的陈述;

                影响因素:个人特征、教育程度、社会互动和个人推理过程会影响 agent 观点的演变;

                Prompt:更新的 prompt f_o 模拟一个具有特定 trait 和教育水平的真实的人,根据他们先前的个人观点和长期记忆中的新信息来更新他们的观点。生成一条推文来表达他们的观点,使用 0 表示不相信,1 表示相信来表明他们的观点,并提供推文背后的推理以及他们信念的基本原理;

Agent 交互模拟器

        社交网络:除了 DOA 模块,agent 形成一个社交网络,从而可以计算宏观层面不同群体中的个体数量;

        SIR 模型:采用修改后的 SIR(易感-感染-恢复)模型,其中 agent 可以在易受虚假新闻影响、通过传播虚假新闻而受到感染以及在纠正错误信息后被视为已恢复之间转换;与传统的 SIR 模型不同,恢复的 agent 可能会再次受到感染,因为人们的观点是动态的;

        SIS 模型公式:如果通过将“已恢复”标签更改为“易感”,则该模型变得等同于 SIS 模型,从而可以在模拟中应用相同的公式;SIS 模型中的关键公式是描述易感个体和传染性个体数量随时间变化的微分方程;

        干预 (Intervention):模拟权威实体传播有关虚假新闻的澄清信息时激活的干预机制;AIS 引入了一个新的 agent,旨在代表官方发言人;官方 agent 将在指定的日期向所有其他 agent 发布官方反驳,以对抗虚假新闻的传播;

Experiments

        如何通过实验验证所提出的虚假新闻传播模拟框架(FPS)的有效性:

实施细节

        使用的 LLM 是 gpt-3.5-turbo-1106,通过 OpenAI API 调用访问;

        Agent 及其所处的世界是使用 Python 库 Mesa 定义的;

        Agent 的姓名是使用 names-dataset 库选择的,年龄是 从 18 岁到 64 岁随机选择的;

        Agent 的特征基于心理学中常用的 Big Five 特质,每个 agent 有 50% 的几率拥有每个特质的正面或负面版本;

        该框架可以应用于不同的backbones;

评价指标

        在宏观层面,可以跟踪受感染、易感和恢复群体中的人数,并生成轨迹,以直观地表示网络中虚假新闻的传播和控制;

        此外,拟合参数(如恢复率 γ 和传播率 β)也可用于展示网络的动态;

        设计了额外的统计指标,以直观地理解虚假新闻的传播:

                '信念平均值':衡量模拟结束时群体对虚假新闻的平均信念;

                '信念方差':评估信念多样性;

                '感染率':基于模拟期间的最终感染计数进行跟踪;

                '恢复率':从恢复计数中计算得出;

                '峰值率':反映模拟期间的最大感染水平;

                '半速率':是群体中一半人受到感染所需的时间;

宏观层面的观察

        主题比较:在六个不同主题(如政治、科学和恐怖主义)上进行实验,发现虚假政治新闻的传播速度快于关于恐怖主义、科学或金融信息的虚假新闻,这与之前的研究一致。选择了两个主题,其组曲线和拟合结果如图 3 所示。结果表明,政治新闻的受感染人数增长迅速,在短短四天内达到顶峰,该群体迅速形成坚定意见,一致相信虚假新闻,没有改变。

        相比之下,科学主题的受感染人数增长较慢,在 10 人左右波动,同时,恢复人数增加,表明人们倾向于形成对虚假新闻持怀疑态度的稳定观点。增长比较也可以通过拟合的 β 和 γ 参数来证明,其中政治主题的 β 是两倍大,γ 是十分之一。

        这表明,与政治相比,Agent更容易识别科学领域的虚假新闻,模拟数量与经典 SIS 模型之间的良好一致性也验证了模拟方法的准确性和可靠性。表 1 提供了更多统计结果,在政治中,信念平均值较高,方差较小,伴随着较大的感染率和零恢复率。恐怖主义和金融信息主题表现出与科学相似的趋势。

干预策略

        作者提出的干预策略主要集中在通过官方发言人发布澄清信息,以对抗虚假新闻的传播:

干预时机:

        早期干预:在虚假新闻尚未广泛传播时,尽早引入官方发言人进行干预,可以有效地减少最初相信虚假新闻的人数;

        中期干预:在虚假新闻已经传播开来之后,再引入官方发言人进行干预,虽然效果不如早期干预显著,但仍可以逐渐减少受影响的人数;

干预频率:

        单次干预:研究表明,仅进行一次干预是不够的,因为随着时间的推移,人们可能会因为遗忘机制而再次相信虚假新闻;

        多次干预:为了将虚假新闻的传播维持在可控水平,需要频繁地发布官方新闻进行辟谣。实验结果表明,每天或每三天发布一次官方新闻,效果没有显著差异,这意味着可以在一定程度上控制干预成本;

干预对象:

        论文中提到,即使进行了官方干预,仍然有大约50%的受感染个体持续相信虚假新闻。 这些人通常具有“高宜人性”等共同特征。因此,作者暗示,针对特定人群(如高宜人性人群)量身定制干预措施,可能会更有效;

干预方式:

        官方发言人发布正式声明,驳斥有关特定主题的虚假新闻;

该论文存在的不足

        过度简化 Agent 的决策过程:虽然该模型考虑了 Agent 的个性特征、教育水平和社会互动等因素,但 Agent 的推理过程可能仍然过于简化,无法完全捕捉人类思维的复杂性。例如,Agent 的意见更新仅仅依赖于短期和长期记忆中的信息,而忽略了其他可能的影响因素,如情感、价值观和认知偏差。

        缺乏对干预措施长期效果的评估:该论文主要关注早期和频繁干预对抑制虚假新闻传播的效果,但忽略了对干预措施长期效果的评估。例如,即使在早期进行干预,仍然有部分 Agent 会持续相信虚假新闻。这表明,仅仅依靠早期的干预可能无法从根本上改变这些 Agent 的信念,需要进一步研究更有效的干预策略,以提高干预措施的长期效果。

        评价指标的局限性:该论文使用了诸如“信念平均值”、“信念方差”、“感染率”和“恢复率”等指标来评估虚假新闻的传播情况。虽然这些指标可以提供一些有用的信息,但它们可能无法完全反映虚假新闻传播的复杂性和影响。例如,这些指标没有考虑到虚假新闻的内容质量、传播范围和对社会的影响等因素。

        LLM 的固有局限性:该论文使用 LLM 来模拟 Agent 的行为和推理过程。虽然 LLM 在自然语言处理方面表现出色,但它们也存在一些固有的局限性,例如可能产生不准确或不真实的陈述、缺乏常识和推理能力等。这些局限性可能会影响模拟结果的准确性和可靠性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值