- 基于博文相似性的社交机器人检测方法:博文内容相似性、博文长度、博文标点符号、停用词相似性; 引入潜在语义分析模型(LSA)对账号的博文内容相似性特征进行计算; 社交机器人检测系统:离线数据库、特征提取模块、社交账号信息收集模块、社交机器人检测模块;
- 基于蜜罐(Honeypot)的社交机器人检测:(蜜罐通常伪装成看似有利用价值的网络、数据、电脑系统,并故意设置bug来吸引攻击者,在拖延黑客攻击真正目标上有作用,初期使用该技术的如:杀毒软件厂商,用蜜罐来收集病毒样本;)(蜜场: 将网络中的可疑流量重定向到蜜场中,蜜网将低交互和高交互蜜罐结合起来,使蜜罐不再局限于硬件设备,变成数据化实体,如数据库入口、EXCEl电子表格;最终目的就是迷惑攻击者、拖延攻击者,保护真实服务器)借助传统网络攻击检测中的蜜罐技术,通过防御方主动设置一些有弱点的“诱饵”吸引攻击方进行攻击,从而捕获到攻击方的信息,对攻击行为进行分析,并对攻击方进行追踪,达到网络安全防护的目的
- 基于机器学习的社交机器人检测:提取行为特征训练模型;(提取的特征集以及分类器算法各不相同,导致检测模型及检测效果不同)
美国国防高级研究计划局DARPA,2015年2月、3月,具有影响力的社交机器人账号,将其作为比赛数据集;
4. 基于用户点击流序列的恶意社交机器人检测方法:社交机器人行为序列模式库,通过对基于情景感知的用户点击流行为数据深入分析,获取用户点击序列间的转移概率及特定时间间隔特征,在空间维度上融入时间特征;
5. 基于内容的检测:用户评论内容、用户发布内容进行检测;
6. 基于用户行为检测:用户发布、转发;
7. 基于图的检测:构建相应的图,对图进行分析;针对Spam账号的规避策略;基于随机游走的Sybil检测方法Sybilwalk,利用在线社交网络结构为用户分配信誉分数,使用分数对用户进行分类;
8. 基于主成分分析方法将用户的恶意行为和正常行为区分开来;
9. 基于挖掘方法的检测方案:定义行为模式以检测异常行为,用于监控用户活动以检测威胁的控制系统,利用遗传过程挖掘在社会网络网站中找到合适模型的思想;