地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
提示:
1 <= n,m <= 100
0 <= k <= 20
思路:运用深度优先算法dfs,将走过的方格进行标记
实现:
class Solution {
public int movingCount(int m, int n, int k) {
boolean[][] transArray = transArray(m,n,k);
boolean[][] visited = new boolean[m][n];
for(int i = 0 ;i<m ;i++)
for(int j = 0 ;j<n ;j++)
visited[i][j] = false;
return dfs(0,0,visited,transArray);
}
//深度优先算法
public int dfs(int x,int y,boolean[][] visited,boolean[][] transArray){
if(x == -1 || y == -1 || x == transArray.length || y == transArray[0].length || transArray[x][y] == false || visited[x][y] == true)
return 0;
visited[x][y] = true;
int res = 1+dfs(x+1,y,visited,transArray)+dfs(x,y+1,visited,transArray);
return res;
}
//将坐标个数字和算出来与k比较
public boolean[][] transArray(int m,int n,int k){
boolean[][] newA = new boolean[m][n];
for(int i = 0;i < m; i++)
for(int j = 0;j < n; j++)
{
int v = 0;
if(i == 100)
v += 1;
else
v += i%10 + i/10;
if(j == 100)
v += 1;
else
v += j%10 + j/10;
if(v > k)
newA[i][j] = false;
else
newA[i][j] = true;
}
return newA;
}
}