题目
在无限的平面上,机器人最初位于 (0, 0) 处,面朝北方。机器人可以接受下列三条指令之一:
"G":直走 1 个单位
"L":左转 90 度
"R":右转 90 度
机器人按顺序执行指令 instructions,并一直重复它们。只有在平面中存在环使得机器人永远无法离开时,返回 true。否则,返回 false。
链接
https://leetcode-cn.com/problems/robot-bounded-in-circle/
示例
示例 1:
输入:"GGLLGG"
输出:true
解释:
机器人从 (0,0) 移动到 (0,2),转 180 度,然后回到 (0,0)。
重复这些指令,机器人将保持在以原点为中心,2 为半径的环中进行移动。示例 2:
输入:"GG"
输出:false
解释:
机器人无限向北移动。示例 3:
输入:"GL"
输出:true
解释:
机器人按 (0, 0) -> (0, 1) -> (-1, 1) -> (-1, 0) -> (0, 0) -> ... 进行移动。
提示
1 <= instructions.length <= 100
instructions[i]
在{'G', 'L', 'R'}
中
思路一
我们可以想象一下实际的机器人行走,规定了一组路径,每次都按这组路径走,如果可以形成一个回路(环),那么根据对称性,最多执行4趟路径的指令就能回到原点(当然也可能为1和2),于是我们可以统计机器人走4趟这个路径,东西南北走的距离,从而判断是否在原点。
C++ Code
class Solution {
public:
bool isRobotBounded(string instructions) {
//m[0]、m[1]、m[2]、m[3]
//北、西、南、东
int m[4]={0}; //记录每个方向上走的距离
int flag=0; //记录当前方向
instructions = instructions+instructions+instructions+instructions;//执行4次指令
for(int i=0;i<instructions.size();i++){
if(instructions[i]=='G') m[flag]++;
else if(instructions[i]=='L') flag+=1;
else if(instructions[i]=='R') flag+=3;
flag=flag%4;
}
if(m[0]==m[2]&&m[1]==m[3]) return true;
return false;
}
};
思路二
对于思路一,我们还能再进行简化。
在初始时方向朝上,我们把一组路径就当成一步,该步直接从原点(0,0)跳到(x,y)的位置。那么接下来,如果在(x,y)这个位置时
- 1. 方向向左,就类似于“GL”,根据对称性,经过4步就能回到原点
- 2. 方向向右,同上,类似于“GR”,根据对称性,也经过4步就能回到原点
- 3. 方向向下,类似于“GRR”或''GLL'',经过2步就能回到原点
- 4. 方向向上,类似于“GG”或者“LGRG”等,那就一直往上走,永远不会回原点
- 5. 还有一种情况就是本身(x,y)已经在原点了,类似于“GLGLGLG”,这种情况下经过1步就回到原点
因此,我们可以得出结论,当我们走完一趟路径之后,无法回到原点的条件是:
(x,y)不是原点,且方向还是向上(朝北)
C++ Code
class Solution {
public:
bool isRobotBounded(string instructions) {
//m[0]、m[1]、m[2]、m[3]
//北、西、南、东
int m[4]={0}; //记录每个方向上走的距离
int flag=0; //记录当前方向
for(int i=0;i<instructions.size();i++){
if(instructions[i]=='G') m[flag]++;
else if(instructions[i]=='L') flag+=1;
else if(instructions[i]=='R') flag+=3;
flag=flag%4;
}
if(!(m[0]==m[2]&&m[1]==m[3]) && flag==0) return false;
return true;
}
};
结果