【问题描述】这是一个古老而又经典的问题。用给定的几种钱币凑成某个钱数,一般而言有多种方式。例如:给定了 6 种钱币面值为 2、5、10、20、50、100,用来凑 15 元,可以用 5 个 2 元、1个 5 元,或者 3 个 5 元,或者 1 个 5 元、1个 10 元,等等。显然,最少需要 2 个钱币才能凑成 15 元。
你的任务就是,给定若干个互不相同的钱币面值,编程计算,最少需要多少个钱币才能凑成某个给出的钱数。
【输入形式】输入可以有多个测试用例。每个测试用例的第一行是待凑的钱数值 M(1 <= M<= 2000,整数),接着的一行中,第一个整数 K(1 <= K <= 10)表示币种个数,随后是 K个互不相同的钱币面值 Ki(1 <= Ki <= 1000)。输入 M=0 时结束。
【输出形式】每个测试用例输出一行,即凑成钱数值 M 最少需要的钱币个数。如果凑钱失败,输出“Impossible”。你可以假设,每种待凑钱币的数量是无限多的。
【样例输入】
15
6 2 5 10 20 50 100
1
1 2
0
【样例输出】
2
Impossible
dp算法
#include<iostream>
using namespace std;
int main() {
int a,i,i1,n,j,k,min,t=0,temp,s=0,t1,sign=0;
while(cin>>a) {
if(a==0) break;
cin>>n;
int z[n],s[a+1][n];
for(i=0; i<n; i++) cin>>z[i];
//升序
for(i=0; i<n-1; i++) {
for(j=0; j<n-1-i; j++) {
if(z[j]>z[j+1]) {
temp=z[j];
z[j]=z[j+1];
z[j+1]=temp;
}
}
}
for(i=0;i<n;i++){
s[0][i]=0;
}
for(i=1;i<a+1;i++){
for(j=0;j<n;j++){
i1=i;
if(z[j]>i1) s[i][j]=-1;
else if(z[j]==i1) s[i][j]=1;
else if(z[j]<i1){
i1=i1-z[j];
min=-1;
sign=0;
for(k=0;k<n;k++){
if(s[i1][k]!=-1&&sign==0){
min=s[i1][k];
sign=1;
}
else if(s[i1][k]!=-1&&min>s[i1][k]){
min=s[i1][k];
}
}
if(min==-1) s[i][j]=-1;
else s[i][j]=min+1;
}
}
}
sign=0;
min=-1;
for(i=0;i<n;i++){
if(s[a][i]!=-1&&sign==0){
min=s[a][i];
sign=1;
}
if(s[a][i]!=-1&&min>s[a][i]){
min=s[a][i];
}
}
if(min==-1)cout<<"Impossible"<<endl;
else cout<<min<<endl;
// cout<<"——————————————————"<<endl;
// for(i=0;i<a+1;i++){
// for(j=0;j<n;j++) cout<<s[i][j]<<' ';
// cout<<endl;
// }
// cout<<"——————————————————";
}
return 0;
}