连续型随机变量及其概率密度

连续型随机变量及其概率密度

定义

如果对于随机变量X的分布函数 F ( x ) F(x) F(x),存在非负函数 f ( x ) f(x) f(x),使得对于任意实数 x x x,有

F ( x ) = ∫ − ∞ x f ( t ) d t F(x)={\displaystyle \int^x_{-\infty} f(t)dt} F(x)=xf(t)dt

则称 X X X连续型随机变量,其中函数 f ( x ) f(x) f(x)称为 X X X概率密度函数简称概率密度

性质

F ( x ) = ∫ − ∞ x f ( t ) d t F(x)={\displaystyle \int^x_{-\infty} f(t)dt} F(x)=xf(t)dt

概率密度 f ( x ) f(x) f(x)具有以下性质:

  1. 非负性: f ( x ) ⩾ 0 f(x){\geqslant}0 f(x)0
  2. 归一性: ∫ − ∞ + ∞ f ( x ) d x = 1 {\large \int^{+\infty}_{-\infty}f(x)dx}=1 +f(x)dx=1

这两条性质是判定一个函数fx)是否为某随机变量X的概率密度函数的充要条件

  1. P { x 1 < X ⩽ x 2 } = F ( x 2 ) − F ( x 1 ) = ∫ − ∞ x 2 f ( x ) d x − ∫ − ∞ x 1 f ( x ) d x = ∫ x 1 x 2 f ( x ) d x   ( x 1 ⩽ x 2 ) P\{x_1<X{\leqslant}x_2\}=F(x_2)-F(x_1)={\large \int^{x_2}_{-\infty}f(x)dx}-{\large \int^{x_1}_{-\infty}f(x)dx}={\large \int^{x_2}_{x_1}f(x)dx}{\ }(x_1{\leqslant}x_2) P{x1<Xx2}=F(x2)F(x1)=x2f(x)dxx1f(x)dx=x1x2f(x)dx (x1x2)

几何意义: X X X落在区间 ( x 1 , x 2 ] (x_1,x_2] (x1,x2]的概率等于区间 ( x 1 , x 2 ] (x_1,x_2] (x1,x2]上曲线 f ( x ) f(x) f(x)之下的曲边梯形的面积。

  1. f ( x ) f(x) f(x)的连续点,有 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)

注: X X X连续型随机变量,对任意点a,都有 P { X = a } = 0 P\{X=a\}=0 P{X=a}=0

🆗接下来就是例题环节

例题1

X X X连续型随机变量,其概率密度

f ( x ) = { k e − 3 x x > 0 0 x ⩽ 0 {\large f(x)=\begin{cases}ke^{-3x} & x>0\\ 0 & x\leqslant0 \end{cases}} f(x)=ke3x0x>0x0

  1. 确定常数k
  2. X X X的分布函数,并求 P { X > 0.1 } P\{X>0.1\} P{X>0.1}

解 1 : 1 = ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ 0 f ( x ) d x + ∫ 0 + ∞ f ( x ) d x = 0 + ∫ 0 + ∞ k e − 3 x d x = k ( − 1 3 ) e − 3 x ∣ 0 + ∞ = k 3 解 得 k = 3 解1:\\ {\large 1=\int^{+\infty}_{-\infty}f(x)dx=\int^{0}_{-\infty}f(x)dx+\int^{+\infty}_{0}f(x)dx}\\ ={\large 0+\int^{+\infty}_{0}ke^{-3x}dx=k(-\frac{1}{3})e^{-3x}|^{+\infty}_0=\frac{k}{3}}\\ 解得k=3 11=+f(x)dx=0f(x)dx+0+f(x)dx=0+0+ke3xdx=k(31)e3x0+=3kk=3

解 2 : 当 x ⩽ 0 时 , F ( x ) = ∫ − ∞ x 0 d x = 0 当 x > 0 时 , F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 f ( t ) d t + ∫ 0 x 3 e − 3 t d t = 0 + 3 × ( − 1 3 ) e − 3 t ∣ 0 x = 1 − e − 3 x 解2:\\ 当x{\leqslant}0时,F(x)=\int^x_{-\infty}0dx=0\\ 当x>0时,F(x)=\int^x_{-\infty}f(t)dt=\int^0_{-\infty}f(t)dt+\int^x_03e^{-3t}dt\\ =0+3\times(-\frac{1}{3})e^{-3t}|^x_0=1-e^{-3x} 2x0,F(x)=x0dx=0x>0,F(x)=xf(t)dt=0f(t)dt+0x3e3tdt=0+3×(31)e3t0x=1e3x

都积到这里,下面就不用写了吧,就是带值计算的事了(😘容许我偷个小懒吧)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二维连续型随机变量是指有两个随机变量 $X$ 和 $Y$,它们可以取到的值是连续的。它们的联合概率密度函数(Joint Probability Density Function,简称联合概率密度)是 $f_{X,Y}(x,y)$,表示同时取到 $X=x$ 和 $Y=y$ 的概率密度。 在二维连续型随机变量中,我们经常需要计算一些概率和期望值。其中,联合概率密度函数的积分可以得到概率: $$ P(a\leq X\leq b, c\leq Y\leq d)=\int_a^b\int_c^d f_{X,Y}(x,y)dydx $$ 同时,我们也可以计算 $X$ 和 $Y$ 的边缘概率密度函数(Marginal Probability Density Function)。分别为: $$ f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy $$ $$ f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx $$ 边缘概率密度函数是联合概率密度函数在某个维度上的积分。它们分别表示 $X$ 和 $Y$ 单独取到某个值的概率密度。 此外,我们还可以计算 $X$ 和 $Y$ 的协方差(Covariance)和相关系数(Correlation Coefficient)。它们分别为: $$ Cov(X,Y) = E[(X-E(X))(Y-E(Y))] $$ $$ \rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} $$ 其中,$E(X)$ 和 $E(Y)$ 分别是 $X$ 和 $Y$ 的期望值,$Var(X)$ 和 $Var(Y)$ 分别是 $X$ 和 $Y$ 的方差。协方差和相关系数可以用来描述 $X$ 和 $Y$ 之间的关系,其中相关系数的取值范围在 $[-1,1]$ 之间。如果 $\rho_{X,Y} > 0$,则 $X$ 和 $Y$ 为正相关;如果 $\rho_{X,Y} < 0$,则 $X$ 和 $Y$ 为负相关;如果 $\rho_{X,Y} = 0$,则 $X$ 和 $Y$ 为不相关。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值