12. 连续型随机变量及其概率密度

连续型随机变量及其概率密度

定义: 对于随机变量 X X X 的分布函数 F ( x ) F(x) F(x),若存在非负的函数 f ( x ) f(x) f(x),使对于任意实数 x x x 有:

F ( x ) = ∫ − ∞ x f ( t )   d t F(x)=\int_{-\infty}^{x} f(t) \, {\rm d}t F(x)=xf(t)dt

则称 X X X 为连续型随机变量,其中 f ( x ) f(x) f(x) 称为 X X X概率密度函数,检测概率密度。


f ( x ) f(x) f(x) 的性质:

(1) f ( x ) ≥ 0 ; f(x)\geq 0; f(x)0;

(2) ∫ − ∞ + ∞ f ( x )   d x = 1 ; \int_{-\infty}^{+\infty} f(x) \, {\rm d}x=1; +f(x)dx=1;

∵ F ( + ∞ ) = 1 \quad \quad \because F(+\infty)=1 F(+)=1

(3) 对于任意的实数 x 1 , x 2   ( x 1 ≤ x 2 ) x_1,x_2 \,(x_1\leq x_2) x1,x2(x1x2)

P ( x 1 < X ≤ x 2 ) = ∫ x 1 x 2 f ( t )   d t ; \quad P(x_1<X\leq x_2)=\int_{x_1}^{x_2} f(t) \, {\rm d}t; P(x1<Xx2)=x1x2f(t)dt;

∵ L H S = P ( X ≤ x 2 ) − P ( X ≤ x 1 ) = F ( x 2 ) − F ( x 1 ) = ∫ − ∞ x 2 f ( t )   d t − ∫ − ∞ x 1 f ( t )   d t \quad \because LHS = P(X\leq x_2)-P(X\leq x_1) = F(x_2)-F(x_1) = \int_{-\infty}^{x_2} f(t) \, {\rm d}t - \int_{-\infty}^{x_1} f(t) \, {\rm d}t LHS=P(Xx2)P(Xx1)=F(x2)F(x1)=x2f(t)dtx1f(t)dt

   ⟹    \implies 对任意的实数 a a a P ( X = a ) = 0. P(X=a) = 0. P(X=a)=0. P ( x 1 < X ≤ x 2 ) = P ( x 1 < X < x 2 ) P(x_1<X\leq x_2) = P(x_1<X<x_2) P(x1<Xx2)=P(x1<X<x2)

对于连续型的随机变量 X X X,有

P ( X ∈ D ) = ∫ D f ( x )   d x , 任 意 D ⊂ R . P(X\in D) = \int_D f(x) \, {\rm d}x,任意 D \subset R. P(XD)=Df(x)dxDR.

(4)在 f ( x ) f(x) f(x) 连续点 x x x F ′ ( x ) = f ( x ) . F'(x) = f(x). F(x)=f(x).

即在 f ( x ) f(x) f(x) 的连续点

f ( x ) = F ′ ( x ) = lim ⁡ Δ x → 0 F ( x + Δ x ) − F ( x ) Δ x = lim ⁡ Δ x → 0 P ( x < X ≤ x + Δ x ) Δ x f(x) = F'(x) = \lim_{\Delta x \to 0} \frac{F(x+\Delta x)-F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{P(x<X\leq x+\Delta x)}{\Delta x} f(x)=F(x)=Δx0limΔxF(x+Δx)F(x)=Δx0limΔxP(x<Xx+Δx)

P ( x < X ≤ x + Δ x ) ≈ f ( x ) ⋅ Δ x P(x<X\leq x+\Delta x) \approx f(x)·\Delta x P(x<Xx+Δx)f(x)Δx

这表示 X X X 落在点 x x x 附近 ( x , x + Δ x ] (x, x+\Delta x] (x,x+Δx] 的概率近似等于 f ( x ) Δ x f(x)\Delta x f(x)Δx


说明:

(1) f ( x ) f(x) f(x) 值的含义;

\quad \quad Δ x \Delta x Δx 充分小时,

\quad \quad P ( x < X ≤ x + Δ x ) ≈ f ( x ) ⋅ Δ x P(x<X\leq x+\Delta x) \approx f(x)·\Delta x P(x<Xx+Δx)f(x)Δx

(2) f ( x ) 的 值 是 可 以 大 于 1 的 ; f(x) 的值是可以大于 1的; f(x)1

(3)

f ( x ) ∫ − ∞ x f ( t )   d t → F ( x ) f(x) \quad \underrightarrow{\int_{-\infty}^x f(t) \, {\rm d}t} \quad F(x) f(x) xf(t)dtF(x)

F ( x ) d d x F ( x ) ← f ( x ) F(x) \quad \underleftarrow{\frac{d}{dx}F(x)} \quad f(x) F(x) dxdF(x)f(x)


例 1: X X X 的概率密度为

f ( x ) = { c x + 1 / 6 , 0 < x < 2 ; 0 , 其他. f(x)=\begin{cases} cx+1/6, & 0<x<2; \\ 0, & \text{其他.} \end{cases} f(x)={cx+1/6,0,0<x<2;其他.

求:(1)常数 c c c 的值;(2) X X X 的概率分布函数 F ( x ) F(x) F(x);(3) P ( − 1 < X < 1 ) P(-1<X<1) P(1<X<1) 的值。

解 :

(1)

1 = ∫ − ∞ + ∞ f ( x )   d x = ∫ − ∞ 0 f ( x )   d x + ∫ 0 2 f ( x )   d x + ∫ 2 + ∞ f ( x )   d x = ∫ − ∞ 0 0   d x + ∫ 0 2 ( c x + 1 6 )   d x + ∫ 2 + ∞ 0   d x = ∫ 0 2 ( c x + 1 6 )   d x = ( c 2 x 2 + 1 6 x ) ∣ 0 2 = c 2 × 2 2 + 1 6 × 2    ⟹    c = 1 3 . \begin{aligned} 1 &= \int_{-\infty}^{+\infty} f(x) \, {\rm d}x = \int_{-\infty}^{0} f(x) \, {\rm d}x + \int_0^2 f(x) \, {\rm d}x + \int_2^{+\infty} f(x) \, {\rm d}x \\ &= \int_{-\infty}^0 0 \, {\rm d}x + \int_0^2 (cx+\frac{1}{6}) \, {\rm d}x + \int_2^{+\infty} 0 \, {\rm d}x = \int_0^2 (cx+\frac{1}{6}) \, {\rm d}x = \left. (\frac{c}{2}x^2 + \frac{1}{6}x) \right| _{0}^{2} \\ &= \frac{c}{2} \times 2^2 + \frac{1}{6} \times 2 \implies c = \frac{1}{3}. \end{aligned} 1=+f(x)dx=0f(x)dx+02f(x)dx+2+f(x)dx=00dx+02(cx+61)dx+2+0dx=02(cx+61)dx=(2cx2+61x)02=2c×22+61×2c=31.

(2)
f ( x ) = { x / 3 + 1 / 6 , 0 < x < 2 ; 0 , 其他. f(x)= \begin{cases} x/3+1/6, & 0<x<2; \\ 0, & \text{其他.} \end{cases} f(x)={x/3+1/6,0,0<x<2;其他.

F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t )   d t F(x)=P\{X\leq x\}=\int_{-\infty}^x f(t) \, {\rm d}t F(x)=P{Xx}=xf(t)dt

由第 1 问可知, ∫ 0 2 ( c x + 1 6 )   d x = 1 \int_0^2 (cx+\cfrac{1}{6}) \, {\rm d}x=1 02(cx+61)dx=1,等价于 P { X ∈ ( 0 , 2 } = 1 P\{X\in (0,2\}=1 P{X(0,2}=1

a. 当 x < 0 x<0 x<0 时, F ( x ) = P { X ≤ x } = ∫ − ∞ x 0   d t = 0 F(x)=P\{X\leq x\}=\int_{-\infty}^x 0 \, {\rm d}t = 0 F(x)=P{Xx}=x0dt=0;

b. 当 x ≥ 2 x\geq 2 x2 时, ( 0 , 2 ) ⊂ ( − ∞ , x ] (0,2)\subset (-\infty, x] (0,2)(,x],故 F ( x ) = P { X ≤ x } = 1 F(x)=P\{X\leq x\}=1 F(x)=P{Xx}=1;

c. 当 0 ≤ x < 2 0\leq x<2 0x<2

F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t )   d t = ∫ − ∞ 0 f ( t )   d t + ∫ 0 x f ( t )   d t = ∫ − ∞ 0 0   d t + ∫ 0 x ( t 3 + 1 6 )   d t = ( t 2 6 + t 6 ) ∣ 0 x = x 2 6 + x 6 \begin{aligned} F(x) &= P\{X\leq x\} = \int_{-\infty}^x f(t) \, {\rm d}t = \int_{-\infty}^0 f(t) \, {\rm d}t + \int_0^x f(t) \, {\rm d}t \\ &= \int_{-\infty}^0 0 \, {\rm d}t + \int_0^x (\frac{t}{3} + \frac{1}{6}) \, {\rm d}t = \left. (\frac{t^2}{6} + \frac{t}{6}) \right| _0^x = \frac{x^2}{6} + \frac{x}{6} \end{aligned} F(x)=P{Xx}=xf(t)dt=0f(t)dt+0xf(t)dt=00dt+0x(3t+61)dt=(6t2+6t)0x=6x2+6x

F ( x ) = { 0 , x < 0 ; x 2 6 + x 6 , 0 ≤ x < 2 ; 1 , x ≥ 2. F(x)= \begin{cases} 0, & x<0; \\ \cfrac{x^2}{6} + \cfrac{x}{6}, &0\leq x<2; \\ 1, & x\geq 2. \end{cases} F(x)=0,6x2+6x,1,x<0;0x<2;x2.

(3)

f ( x ) = { x / 3 + 1 / 6 , 0 < x < 2 ; 0 , 其他. f(x)= \begin{cases} x/3+1/6, & 0<x<2; \\ 0, & \text{其他.} \end{cases} f(x)={x/3+1/6,0,0<x<2;其他.

P ( − 1 < X < 1 ) = ∫ − 1 1 f ( x )   d x = ∫ − 1 0 f ( x )   d x + ∫ 0 1 f ( x )   d x = ∫ − 1 0 0   d x + ∫ 0 1 ( x 3 + 1 6 )   d x = 0 + ( x 2 6 + x 6 ) ∣ 0 1 = 1 3 . \begin{aligned} P(-1<X<1)&=\int_{-1}^1 f(x) \, {\rm d}x \\ &= \int_{-1}^0 f(x) \, {\rm d}x + \int_0^1 f(x) \, {\rm d}x \\ &= \int_{-1}^0 0 \, {\rm d}x + \int_0^1 (\cfrac{x}{3} + \cfrac{1}{6}) \, {\rm d}x \\ &= 0 + \left. (\cfrac{x^2}{6} + \cfrac{x}{6}) \right| _0^1 = \cfrac{1}{3}. \end{aligned} P(1<X<1)=11f(x)dx=10f(x)dx+01f(x)dx=100dx+01(3x+61)dx=0+(6x2+6x)01=31.

F ( x ) = { 0 , x < 0 ; x 2 6 + x 6 , 0 ≤ x < 2 ; 1 , x ≥ 2. F(x)= \begin{cases} 0, & x<0; \\ \cfrac{x^2}{6} + \cfrac{x}{6}, &0\leq x<2; \\ 1, & x\geq 2. \end{cases} F(x)=0,6x2+6x,1,x<0;0x<2;x2.

P ( − 1 < X < 1 ) = F ( 1 ) − F ( − 1 ) = 1 2 6 + 1 6 − 0 = 1 3 P(-1<X<1)=F(1)-F(-1)=\cfrac{1^{2}}{6}+\cfrac{1}{6} - 0 = \cfrac{1}{3} P(1<X<1)=F(1)F(1)=612+610=31


  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值