连续型随机变量及其概率密度(知识点部分)

1. 连 续 型 随 机 变 量 1.连续型随机变量 1.

如果对于随机变量 X X X的分布函数 F ( x ) F(x) F(x),存在非负可积函数 f ( x ) f(x) f(x),使对于任意实数 x x x F ( x ) = ∫ − ∞ x f ( t ) d t , F(x)=\int_{-\infty}^{x} f(t)dt, F(x)=xf(t)dt,
则称 X X X连续型随机变量 f ( x ) f(x) f(x)称为的概率密度函数,简称概率密度.

2. 概 率 密 度 f ( x ) 的 性 质 2.概率密度f(x)的性质 2.f(x)

( 1 ) f ( x ) ⩾ 0 ;    (1)f(x)\geqslant0;\; (1)f(x)0;

( 2 ) ∫ − ∞ ∞ f ( x ) d x = 1 ; (2)\int_{-\infty}^{\infty} f(x) d x=1; (2)f(x)dx=1;

( 3 ) 对 于 任 意 实 数 x 1 , x 2 , ( x 1 ≤ x 2 ) (3)对于任意实数x_1,x_2,(x_{1} \leq x_{2}) (3)x1,x2,(x1x2)
P { x 1 < X ≤ x 2 } = F ( x 2 ) − F ( x 1 ) = ∫ x 1 x 2 f ( x ) d x ; {P}\{x_1<X \leq x_{2}\}=F(x_2)-F(x_1)=\int_{x_{1}}^{x_{2}} f(x) d x; P{x1<Xx2}=F(x2)F(x1)=x1x2f(x)dx;
( 4 ) 若 f ( x ) 在 点 x 处 连 续 , 则 有 F ′ ( x ) = f ( x ) ; (4)若f(x)在点x处连续,则有F^{\prime}(x)=f(x); (4)f(x)xF(x)=f(x);

( 5 ) P { X = a } = 0. (5)P\{X=a\}=0. (5)P{X=a}=0.

3. 均 匀 分 布 3.均匀分布 3.

若连续型随机变量 X X X具有概率密度 f ( x ) = { 1 b − a , a < x < b , 0 , 其 他 , f(x)=\left\{\begin{array}{ll} \frac{1}{b-a}, & a<x<b ,\\ 0, &其他, \end{array}\right. f(x)={ba1,0,a<x<b
则称 X X X在区间 ( a , b ) (a,b) (a,b)上服从均匀分布.记为 X ∼ U ( a , b ) X \sim U(a,b) XU(a,b).
X X X的分布函数为 f ( x ) = { 0 , x < a , x − a b − a , a ≤ x ≤ b , 1 , x ⩾ b f(x)=\left\{\begin{array}{ll} 0, &x<a ,\\ \frac{x-a}{b-a}, &a \leq x \leq b,\\ 1, &x\geqslant b \end{array}\right. f(x)=0,baxa,1,x<aaxbxb

4. 指 数 分 布 4.指数分布 4.

若连续型随机变量 X X X的概率密度为 f ( x ) = { 1 θ e − x θ , x > 0 , 0 , 其 他 , f(x)=\left\{\begin{array}{ll} \frac{1}{\theta} e^{-\frac{x}{\theta} },&x>0,\\ 0, & 其他, \end{array}\right. f(x)={θ1eθx0,x>0,,
其中 θ > 0 \theta>0 θ>0为常数,则称 X X X服从参数为 θ \theta θ指数分布.
X X X的分布函数为 F ( x ) = { 1 − e − x θ , x > 0 , 0 , 其 他 , F(x)=\left\{\begin{array}{ll} 1- e^{-\frac{x}{\theta} },&x>0,\\ 0, & 其他, \end{array}\right. F(x)={1eθx0,x>0,,
服从指数分布的随机变量 X X X具有以下有趣的性质:
对于任意 s , t > 0 , s,t>0, s,t>0, P { X > s + t ∣ X > s } = P { X > t } P\{X>s+t|X>s\}=P\{X>t\} P{X>s+tX>s}=P{X>t}
称为无记忆性.

5. 正 态 分 布 5.正态分布 5.

若连续型随机变量 X X X的概率密度为 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < ∞ f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2} },-\infty<x<\infty f(x)=2π σ1e2σ2(xμ)2,<x<
其中 μ , σ ( σ > 0 ) \mu,\sigma(\sigma>0) μ,σ(σ>0)为常数,则称 X X X为服从参数为 μ , σ \mu,\sigma μ,σ正态分布高斯分布,记为 X ∼ N ( μ , σ ) . X \sim N(\mu,\sigma). XN(μ,σ).
X X X的分布函数为 F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t \begin{aligned} &F(x)=\frac{1}{\sqrt{2 \pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}} d t\\ \end{aligned} F(x)=2π σ1xe2σ2(tμ)2dt
特别,当 μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1时称随机变量 X X X服从标准正态分布.其概率密度和分布函数分别用 φ ( x ) , Φ ( x ) \varphi(x),\Phi(x) φ(x),Φ(x)表示即有 φ ( x ) = 1 2 π e − x 2 2 \begin{aligned} &\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^2}{2}}\\\end{aligned} φ(x)=2π 1e2x2
Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t \begin{aligned} &\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} d t\\ \end{aligned} Φ(x)=2π 1xe2t2dt
易知 Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(x)=1Φ(x)

6. 引 理 6.引理 6.

X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2),则 Z = X − μ σ ∼ N ( 0 , 1 ) Z=\frac{X-\mu}{\sigma} \sim N(0,1) Z=σXμN(0,1)
于是,若 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2),则它的分布函数 F ( x ) F(x) F(x)可写成 F ( x ) = P { X ≤ x } = P { X − μ δ ≤ x − μ δ } = Φ ( x − μ δ ) \begin{aligned} &F(x)=P\{X \leq x\}=P\left\{\frac{X-\mu}{\delta} \leq \frac{x-\mu}{\delta}\right\}=\Phi\left(\frac{x-\mu}{\delta}\right)\\ \end{aligned} F(x)=P{Xx}=P{δXμδxμ}=Φ(δxμ)
对于任意区间 ( x 1 , x 2 ] (x_1,x_2] (x1,x2],有 P { x 1 < X ≤ x 2 } = P { x 1 − μ δ < X − μ δ ≤ x 2 − μ δ } = Φ ( x 2 − μ δ ) − Φ ( x 1 − μ δ ) \begin{aligned}&P\left\{x_{1}<X \leq x_{2}\right\}=P\left\{\frac{x_{1}-\mu}{\delta}<\frac{X-\mu}{\delta} \leq \frac{x_{2}-\mu}{\delta}\right\}\\ &=\Phi\left(\frac{x_{2}-\mu}{\delta}\right)-\Phi\left(\frac{x_{1}-\mu}{\delta}\right) \end{aligned} P{x1<Xx2}=P{δx1μ<δXμδx2μ}=Φ(δx2μ)Φ(δx1μ)

6. 上 α 分 位 点 6.上α分位点 6.α

X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1),若 z α z_\alpha zα满足条件 p { X > z α } = α , 0 < α < 1 , p\{X>z_\alpha\}=\alpha,0<\alpha<1, p{X>zα}=α,0<α<1,
则称点 z α z_\alpha zα为标准正态分布的 α α α分位点.

7. 随 机 变 量 的 函 数 的 分 布 7.随机变量的函数的分布 7.

设随机变量 X X X具有概率密度 f x ( x ) f_x(x) fx(x) − ∞ < x < ∞ , -\infty<x<\infty, <x<,又设函数 g ( x ) g(x) g(x)处处可导且恒有 g ′ ( x ) > 0 , ( 或 恒 有 g ′ ( x ) < 0 ) , g^{\prime}(x)>0,(或恒有g^{\prime}(x)<0), g(x)>0(g(x)<0) Y = g ( X ) Y=g(X) Y=g(X)是连续型随机变量,其概率密度为 f Y ( y ) = { f X [ h ( y ) ] ∣ h ′ y ∣ , α < x < β , 0 , 其 他 , f_Y(y)=\left\{\begin{array}{ll} f_X[h(y)]|h^{\prime}{y}|, & \alpha<x<\beta ,\\ 0, &其他, \end{array}\right. fY(y)={fX[h(y)]hy,0,α<x<β
其中 α = m i n { g ( − ∞ ) , g ( ∞ ) } , β = m a x { g ( − ∞ ) , g ( ∞ ) } \alpha=min\{g(-\infty),g(\infty)\},\beta=max\{g(-\infty),g(\infty)\} α=min{g(),g()},β=max{g(),g()} h ( y ) h(y) h(y) g ( x ) g(x) g(x)的反函数.

8. 其 他 几 个 结 论 8.其他几个结论 8.

( 1 ) 设 随 机 变 量 , 那 么 X 的 线 性 函 数 Y = a X + b ( a ≠ 0 ) 也 服 从 正 态 分 布 . (1)设随机变量,那么X的线性函数Y=aX+b(a\not =0)也服从正态分布. (1)X线Y=aX+b(a=0).
( 2 ) 设 f ( x ) , g ( x ) 都 是 概 率 密 度 函 数 , 那 么 (2)设f(x),g(x)都是概率密度函数,那么 (2)f(x),g(x) h ( x ) = a f ( x ) + ( 1 − a ) g ( x ) , 0 ≤ a ≤ 1 h(x)=af(x)+(1-a)g(x),0 \leq a \leq 1 h(x)=af(x)+(1a)g(x),0a1 也 是 一 个 概 率 密 度 函 数 . 也是一个概率密度函数. .
( 3 ) 设 X 服 从 参 数 为 θ 的 指 数 分 布 , F ( x ) 为 X 的 分 布 函 数 , 设 Y = F ( X ) , 那 么 (3)设X服从参数为\theta的指数分布,F(x)为X的分布函数,设Y=F(X),那么 (3)XθF(x)XY=F(X) Y ∼ N ( 0 , 1 ) . Y \sim N(0,1). YN(0,1).

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二维连续型随机变量是指有两个随机变量 $X$ 和 $Y$,它们可以取到的值是连续的。它们的联合概率密度函数(Joint Probability Density Function,简称联合概率密度)是 $f_{X,Y}(x,y)$,表示同时取到 $X=x$ 和 $Y=y$ 的概率密度。 在二维连续型随机变量中,我们经常需要计算一些概率和期望值。其中,联合概率密度函数的积分可以得到概率: $$ P(a\leq X\leq b, c\leq Y\leq d)=\int_a^b\int_c^d f_{X,Y}(x,y)dydx $$ 同时,我们也可以计算 $X$ 和 $Y$ 的边缘概率密度函数(Marginal Probability Density Function)。分别为: $$ f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy $$ $$ f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx $$ 边缘概率密度函数是联合概率密度函数在某个维度上的积分。它们分别表示 $X$ 和 $Y$ 单独取到某个值的概率密度。 此外,我们还可以计算 $X$ 和 $Y$ 的协方差(Covariance)和相关系数(Correlation Coefficient)。它们分别为: $$ Cov(X,Y) = E[(X-E(X))(Y-E(Y))] $$ $$ \rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} $$ 其中,$E(X)$ 和 $E(Y)$ 分别是 $X$ 和 $Y$ 的期望值,$Var(X)$ 和 $Var(Y)$ 分别是 $X$ 和 $Y$ 的方差。协方差和相关系数可以用来描述 $X$ 和 $Y$ 之间的关系,其中相关系数的取值范围在 $[-1,1]$ 之间。如果 $\rho_{X,Y} > 0$,则 $X$ 和 $Y$ 为正相关;如果 $\rho_{X,Y} < 0$,则 $X$ 和 $Y$ 为负相关;如果 $\rho_{X,Y} = 0$,则 $X$ 和 $Y$ 为不相关。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值