PPO(Proximal Policy Optimization, 近端策略优化) 算法论文链接:
https://doi.org/10.48550/arXiv.1707.06347https://doi.org/10.48550/arXiv.1707.06347 |
PPO算法概述:
PPO是一种用于策略优化的强化学习算法,旨在提高训练的稳定性和效率。其核心思想是通过比较新旧策略,以渐进的方式更新策略,同时引入一个剪切项来控制更新的大小,从而防止过度的策略变化。
PPO算法流程:
1. 初始化: 初始化策略网络,价值函数网络(可选),以及其他算法参数。
2. 采集经验: 在当前策略下,与环境交互,收集轨迹数据,包括状态、动作、奖励等信息。
3. 计算优势: 使用价值函数网络计算每个状态的优势函数,即估计的未来累积回报相对于状态值的差异。
4. 计算比例比较项: 计算新策略和旧策略的概率比,即
5. 计算 PPO Loss: 使用 PPO Loss 函数进行策略网络的更新。PPO Loss 由两部分组成,一部分是优势加权的策略损失,另一部分是剪切项,限制单次更新的幅度。
- 策略损失(Policy Loss): 衡量新策略相对于旧策略的提升,最大化经验的优势函数。
- 剪切项(Clipping Term): 引入剪切项以限制单次更新的幅度,防止过度的策略变化。
其中,是新策略和旧策略的概率比,是优势函数,(epsilon)是剪切幅度。
6. 策略更新: 使用优化算法(如随机梯度下降)更新策略网络参数,以最小化计算得到的 PPO Loss。
7. 循环迭代: 重复步骤2到步骤6,直到达到预定的训练次数或性能指标。
总结:
PPO算法的关键在于通过对比新旧策略,引入剪切项,来渐进地更新策略,确保在学习过程中保持相对的稳定性。