Week T3:天气识别(CNN)

一、前期工作

采用CNN实现多云、下雨、晴、日出四种天气状态的识别。
为了增加模型的泛化能力,新增了Dropout层(正则化)并且将最大池化层调整成了平均池化层

Q:模型的泛化能力是指什么?
解析CNN泛化能力即使模型重建出来的图片信息在人眼看来完整度不高,但是也能正确分类。(个人比较浅显的理解)

我的环境:(换系统了,所以这一课开始,后续都使用这个环境)

  • 电脑系统:Windows 11
  • 语言环境:Python 3.7.8
    在这里插入图片描述
  • 深度学习环境:TensorFlow 2.11.0在这里插入图片描述- 编译器:jupyter notebook
    在这里插入图片描述

1. 导入数据

import matplotlib.pyplot as plt
import os,PIL

# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)

# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)

from tensorflow import keras
from tensorflow.keras import layers,models

import pathlib
data_dir = "D:/jupyter notebook/DL-100-days/datasets/weather_photos/"

data_dir = pathlib.Path(data_dir)

3. 查看数据

数据集一共分为cloudyrainshinesunrise四类,分别存放于weather_photos文件夹中以各自名字命名的子文件夹中。

image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)
图片总数为: 1125
imges = list(data_dir.glob('rain/*.jpg'))
PIL.Image.open(str(imges[0]))

在这里插入图片描述

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 32
img_height = 180
img_width = 180
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
# Q:900张图片的数量怎么计算出来的?能不能看到这900张图片分别是哪些?
Found 1125 files belonging to 4 classes.
Using 900 files for training.

Q:900张图片的数量怎么计算出来的?能不能看到这900张图片分别是哪些?
A:在上述代码中,有这样一句validation_split=0.2,subset="training",,是指将80%的图像用于训练,图片总数是1125,乘以0.8的比例,1125*0.8=900,所以是900张。

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
#Q:同样,225张图片是怎么计算出来的,明明参数设置和训练数据是一样的,除了‘subset’参数的值?
Found 1125 files belonging to 4 classes.
Using 225 files for validation.

Q:同样,225张图片是怎么计算出来的? 明明参数设置和训练数据是一样的,除了subset参数的值
A:看这一句:validation_split=0.2,subset="validation",图片总数*划分比例,这里验证集的比例是0.2,所以1125*0.2=225

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['cloudy', 'rain', 'shine', 'sunrise']

2. 可视化数据

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

3. 再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(32, 180, 180, 3)
(32,)
  • Image_batch是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

  • shuffle():打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
  • prefetch():预取数据,加速运行

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。

prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:
在这里插入图片描述
使用prefetch()可显著减少空闲时间:
在这里插入图片描述

  • cache():将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN网络

用的CNN结构和前两课一样,不同的是在Flatten层前加了一个Dropout()正则化

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。

在此示例中,我们的 CNN 输入,fashion_mnist 数据集中的图片,形状是 (28, 28, 1)即灰度图像。声明第一层同时将形状赋值给参数input_shape

num_classes = 5

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
在上一篇文章花朵识别中,训练准确率与验证准确率相差巨大就是由于模型过拟合导致的

关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(num_classes)               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 rescaling (Rescaling)       (None, 180, 180, 3)       0         
                                                                 
 conv2d (Conv2D)             (None, 178, 178, 16)      448       
                                                                 
 average_pooling2d (AverageP  (None, 89, 89, 16)       0         
 ooling2D)                                                       
                                                                 
 conv2d_1 (Conv2D)           (None, 87, 87, 32)        4640      
                                                                 
 average_pooling2d_1 (Averag  (None, 43, 43, 32)       0         
 ePooling2D)                                                     
                                                                 
 conv2d_2 (Conv2D)           (None, 41, 41, 64)        18496     
                                                                 
 dropout (Dropout)           (None, 41, 41, 64)        0         
                                                                 
 flatten (Flatten)           (None, 107584)            0         
                                                                 
 dense (Dense)               (None, 128)               13770880  
                                                                 
 dense_1 (Dense)             (None, 5)                 645       
                                                                 
=================================================================
Total params: 13,795,109
Trainable params: 13,795,109
Non-trainable params: 0
_________________________________________________________________

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

五、训练模型

epochs = 10

history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)
#Q:已经第三课了,为啥每一课设置的epoch都是10???
Epoch 1/10
29/29 [==============================] - 19s 519ms/step - loss: 1.4765 - accuracy: 0.5844 - val_loss: 0.7658 - val_accuracy: 0.6222
Epoch 2/10
29/29 [==============================] - 14s 475ms/step - loss: 0.5206 - accuracy: 0.7900 - val_loss: 0.5840 - val_accuracy: 0.7600
Epoch 3/10
29/29 [==============================] - 14s 475ms/step - loss: 0.3913 - accuracy: 0.8467 - val_loss: 0.5092 - val_accuracy: 0.8222
Epoch 4/10
29/29 [==============================] - 14s 474ms/step - loss: 0.3156 - accuracy: 0.8833 - val_loss: 0.4492 - val_accuracy: 0.8222
Epoch 5/10
29/29 [==============================] - 14s 477ms/step - loss: 0.2448 - accuracy: 0.9178 - val_loss: 0.5740 - val_accuracy: 0.7956
Epoch 6/10
29/29 [==============================] - 14s 477ms/step - loss: 0.2248 - accuracy: 0.9156 - val_loss: 0.4942 - val_accuracy: 0.8178
Epoch 7/10
29/29 [==============================] - 14s 475ms/step - loss: 0.2247 - accuracy: 0.9100 - val_loss: 0.4552 - val_accuracy: 0.8356
Epoch 8/10
29/29 [==============================] - 14s 477ms/step - loss: 0.1708 - accuracy: 0.9389 - val_loss: 0.4721 - val_accuracy: 0.8444
Epoch 9/10
29/29 [==============================] - 14s 476ms/step - loss: 0.1167 - accuracy: 0.9544 - val_loss: 0.5596 - val_accuracy: 0.8311
Epoch 10/10
29/29 [==============================] - 14s 477ms/step - loss: 0.1400 - accuracy: 0.9467 - val_loss: 0.6492 - val_accuracy: 0.7867

六、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

七:其它

思考:1.最大池化与平均池化的区别是什么呢?2.学习率是不是越大越好,优化器该如何设置呢?
1.首先是计算的结果不同
最大值池化: 给定一个固定size的卷积核(假设是3x3的大小),用这个卷积核和输入网络层的矩阵进行计算,取最大值;
平均值池化: 和上述一样的方式,先计算出卷积后的值,然后取平均值作为最终的值;
其次效果不同,假设某个区域的像素值之间差距特别大(比如边缘、亮度变化特别明显的地方),如果用最大值池化可能会造成的效果是重要特征丢失;而用平均值的话就可以在一定程度上避免这种情况。

2.学习率不是越大越好,让训练模型效果达到最好的学习率才是最好的。优化器的选择可以参考以下的图:
在这里插入图片描述
【拓展】热文 | 卷积神经网络入门案例,轻松实现花朵分类

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值