机器视觉——光源选型

​        一套视觉检测系统主要包括图像采集模块和图像处理模块,而图像采集模块主要由工业相机、镜头以及光源组成。

    图像是机器视觉处理问题的核心,光源是决定图像质量的重要因素。

机器视觉中的光源的作用主要有:

  • 照亮目标,提高亮度;

  • 形成有利于图像处理的成像效果,降低视觉检测系统的复杂度及对 图像处理算法的难度;

  • 克服环境光的干扰,保证图像稳定性;

  • 用作测量的工具或参照物。

一、光源颜色

1.1 颜色的作用

    在工业实际运用中,由于不同工件和材料对不同光源颜色吸收程度是不一样的,要达到的效果不同,检测的项目不同对光源颜色的需求也是不一样的,所以选择一个正确的光源很重要。

1.2 光的颜色

    能匹配出所有颜色的三种颜色称为三原色。RGB又称色光三原色(加色法原理),即红(Red)、绿(Green)、蓝(Blue)。

    不同波长的光线呈现不同的颜色。波长决定特定颜色的特征。不同颜色光源的特点如下:

颜色类型

特点

白色光源

白色光源通常用色温来界定,色温高的颜色偏蓝色(冷色,色温>5000K),色温低的颜色偏红(暖色,色温<3300K),界于3300与5000K之间称之为中间色,白色光源适用性广,亮度高,特别是拍摄彩色图像时使用更多。

蓝色光源

波长范围在430-480之间,广泛用于金属材质的产品,如钢轨,冷轧带钢,船舶加工件、手机外壳等。

红色光源

红色光源的波长通常在600-720之间,其波长比较长,可以透过一些比较暗的物体,例如底材黑色的透明软板孔位定位、绿色线路板线路线路检测,透光膜厚度检测等,采用红色光源更能提高对比度。

<think>嗯,用户这次的问题集中在工业机器视觉系统的三大核心硬件选型:相机、镜头和光源。结合站内引用[1]提到的选型逻辑,需要重点考虑检测目标与背景的光学特性差异。用户显然是个工程师,正在搭建视觉系统,但引用里强调的"测试样品多样性"和"最难检测样品"这两点特别关键——ta可能低估了实际测试的复杂度。 上次对话虽然没涉及具体选型,但用户明确要求"相关知识",说明需要系统性的参数框架。相机部分要强调传感器类型和分辨率的匹配逻辑,比如CMOS和CCD的应用场景区别不能简单带过。镜头选型里工作距离和景深的关系容易混淆,得用具体公式说明:$$ \text{景深} = \frac{2 \times \text{容许弥散圆直径} \times \text{光圈值} \times \text{工作距离}^2}{\text{焦距}^2} $$ 这个公式能直观展示参数互相制约的关系。 光源选型部分引用[1]提供了很好的方法论,但用户可能需要更落地的颜色选择建议。比如金属表面划痕检测用红色环形光比蓝色效果好,因为长波长穿透力强——这个实际案例比单纯列光源类型更有价值。最后补上的"选型步骤"是亮点,把分散的参数整合成可操作的流程,尤其第4步强调现场测试,呼应了引用中"多款备用光源"的实战经验。 相关问题设计成阶梯状:基础参数计算->硬件协同优化->实战调试难点。特别是第3问提到的条纹光案例,能引导用户思考非标场景的解决方案,比单纯问"应用场景"更有深度。 </think>以下是工业机器视觉中相机、镜头及光源选型的核心知识框架,结合关键参数和选型逻辑整理: --- ### **一、相机选型核心参数** 1. **传感器类型** - **CCD**:低噪高动态范围,适合精密测量(如显微成像) - **CMOS**:高速低功耗,适合动态检测(如流水线) - *选型公式*: $$ \text{分辨率} \geq \frac{\text{检测精度} \times 2}{\text{像素尺寸}} $$ (需满足奈奎斯特采样定理[^1]) 2. **分辨率** - 最小像素数 = 视野范围(FOV) ÷ 最小特征尺寸 × 3(亚像素要求) 3. **帧率** - 最低帧率 ≥ 产线速度 ÷ 单次检测区域长度 - *例*:1m/s产线,检测50mm区域 → 帧率 ≥ 20fps 4. **接口类型** ```mermaid graph LR A[接口选型] -->|高速>5Gbps| B[CoaXPress] A -->|中速1-5Gbps| C[USB3.0/GigE] A -->|低成本| D[GigE] ``` --- ### **二、镜头选型关键指标** 1. **焦距计算** $$ f = \frac{\text{工作距离} \times \text{传感器尺寸}}{\text{FOV} + \text{传感器尺寸}} $$ *注:需预留10%余量* 2. **景深要求** $$ \text{景深} = \frac{2 \times \text{容许弥散圆} \times \text{F值} \times (\text{工作距离})^2}{f^2} $$ - 检测三维物体时需满足:**景深 > 物体高度差** 3. **畸变控制** - 测量场景选远心镜头(畸变<0.1%) - 识别场景普通镜头可接受畸变<2% --- ### **三、光源选型方法论** 1. **光学特性匹配表** | 检测目标 | 推荐光源 | 原理 | |----------------|-------------------|---------------------| | 表面划痕 | 低角度环形光 | 突出微观凹凸衍射 | | 透明体缺陷 | 背光+漫射板 | 透射成像 | | 金属反光字符 | 同轴光源 | 抑制镜面反射 | | 彩色分拣 | RGB可编程光源 | 增强色彩对比度 | 2. **波长选择原则** - 穿透材料:红外光(如检测硅晶圆内部缺陷) - 增强对比:互补色(红色光增强绿色标记) - *公式*:$$ \text{对比度} = \frac{|I_{\text{目标}} - I_{\text{背景}}|}{I_{\text{max}}} $$ --- ### **四、协同选型步骤** 1. **需求分析** - 明确最小特征尺寸、检测速度、工作距离限制 2. **相机先决** - 按精度/速度确定分辨率与帧率 3. **镜头匹配** - 计算焦距,验证景深与畸变 4. **光源实验** - 备选3种以上光源(含不同波长)实测对比度 5. **系统验证** - 使用 **最差工况样品** 测试(如油污/变形件)[^1] > 案例:PCB焊点检测 > - 选200万像素CMOS相机(3.4μm像素) > - 搭配35mm远心镜头(景深±0.5mm) > - 红色环形光(突出锡球轮廓) ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值