例题6-16 UVA10129 Play on Words(34行AC代码)

紫书刷题进行中,题解系列【GitHub|CSDN

例题6-16 UVA10129 Play on Words(34行AC代码)

题目大意

能否将n个单词顺序连接,其中每个单词的最后一个字母等于它后序单词的首字母(类似词语接龙)。其中单词可以重复。

思路分析

如果将26个小写字母作为图的顶点,每个单词作为边(比如one作为定点o和e的边),那么问题等价于是否存在欧拉回路或通路,在保证**图是连通(有向图则不考虑方向)**的情况下,有向图和无向图对应的欧拉路判定条件见下表:

无向图有向图
欧拉回路所有点均为偶度顶点(顶点度数为偶数)所有点出度=入度(入度=箭头射入个数)
欧拉通路最多仅2个点为奇度顶点(顶点度数为奇数)最多两个点出度!=入度;其中一个出度比入度大1;另一个入度比出度大1

因此解决思路如下:

  • 连通图判定:并查集或者dfs均可
  • 顶点出入度:用degree[i]记录每个点的出入度结果,出则-1,入则+1,结果为0表示出入度相同

注意点

  • 不要直接用每个单词作为结点来构建图,这样会超时
  • 考虑仅1个单词的情况
  • 用并查集压缩路径时,注意最后还要再次遍历每个点,避免有些点的父结点为更新
  • 构造压缩路径时需先找到a和b的根,再进行合并

AC代码(C++11,欧拉路径)

#include<bits/stdc++.h>
using namespace std;
int T, n;
int findFather(int a, vector<int>& father) { // 并查集找父结点,顺带压缩路径
    return father[a] = (father[a] == a) ? a : findFather(father[a], father);
}
int main() {
    scanf("%d", &T);
    string s;
    while (T --) {
        scanf("%d", &n);
        vector<int> degree(26,0), father(26); // 26个字母对应的入度表,父结点
        for (int i = 0; i < 26; i ++) father[i] = i; // 初始化并查集父结点
        set<char> _set; // 存储出现的字符个数(去重)
        for (int i = 0; i < n; i ++) {
            cin >>s; 
            _set.insert(s[0]); _set.insert(s.back()); // 头尾插入集合
            degree[s[0]-'a'] --; degree[s.back()-'a'] ++; // 出度和入度计算
            father[findFather(s[0]-'a', father)] = findFather(s.back()-'a', father); // 并查集计算,两个都应该寻找root后再合并
        }
        int even=0, sp=-1, ep=-1; // 偶度顶点
        for (int i=0; i < 26; i ++) {
            if (degree[i] == 0) even ++;
            else if (degree[i] == 1) sp = 1; // 奇度顶点,且出度-入度=1
            else if (degree[i] == -1) ep = 1; // 奇度顶点,且出度-入度=-1
        }
        for (int i=0; i < 26; i ++) father[i] = findFather(i, father); // 最后来一遍,防止有些顶点没被更新
        int num=0;
        for (int i=0; i < 26; i ++) if (father[i] == i) num ++; // 不同的集合个数
        if ((even == 26-2 && (sp==1&&ep==1) || even == 26) && num == 1+26-_set.size()) printf("Ordering is possible.\n");
        else printf("The door cannot be opened.\n");
    }
    return 0;
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值