
简介
数学并不是高屋建瓴,其实往往是对来自生活中的常识或者偏见的理论总结。概率就是源自生活中的随机现象。
我个人对德州扑克还是很感兴趣的,比如见第一张图。
赌注分配问题
这个故事其实有很多版本,感觉找不到正版,不过都大同小异。这里就说一个我喜欢的版本吧。
17世纪,有一位职业赌徒叫做安托万·古保德,他是法国人,不过他有一个更广为人知的称谓——梅累骑士。
我没搜到他的样子,百度上给我的是梅累…额 ,对不起是梅西:
在一次赌局中,他和朋友打赌,而赌注是n个金币(有的版本说的是珐琅)。然后规则就是通过骰子的方式,如果先出现三次“6”的点数的话就是我们这位无聊的梅累骑士获胜,如果先出现三次“4”的点数的话就是比梅累骑士更无聊的他的对手获胜。
这还敢说自己是职业赌徒,这赌法完全看人品。这么没有营养的赌局却能这么经典,佩服佩服。
然后两个人就开始扔啊扔,然后此时他们的成绩是:
参赛选手 | 获胜条件 | 当前积分 |
---|---|---|
梅累 | 先出现三次“6” | 6 6 |
梅累的朋友 | 先出现三次“4” | 4 |
就在激战正酣的时候,国王突然就要召见梅累骑士,那么这么重要的赌局就只能无奈中断。这两位想的竟然不是什么时候约起继续,反倒是考虑如何分配赌注。
梅累的对手认为,梅累只需要再出现一次“6”,但是自己需要出现两次“4”,所以赌注分配应当是:
梅累 | 对手 |
---|---|
2 | 1 |
这算法不用想,肯定是不对的,不过也许他是故意的。
梅累听了,仔细一想,觉得这个2:1的分配时有问题的,不过也没法说出一个所以然。
到这里,著名的赌注分配问题就产生了
求助帕斯卡
梅累同志并不能解决这个问题,于是向数学家帕斯卡求助。
然后…额,然后,帕斯卡同学竟然思考了三年,可见我们现在是站在众多巨人的肩膀上在学习数学啊。
而且帕斯卡不是一个人思考了三年,他还不断和费马写信交流,看来,在17世纪我们一定是超级数学家,在21世纪就成了渣渣。
最终得到了帕斯卡和费马两位同学得出结论,认为梅累的想法是正确的,正确的赌注分配比例应该为:
梅累 | 对手 |
---|---|
3 | 1 |
因为,我们可以发现再掷两次骰子“赌局”一定会结束:
1 | 2 | 3 |
---|---|---|
(6) | (6) | 梅累win |
(6) | (4) | 梅累win |
(4) | (6) | 梅累win |
(4) | (4) | 梅累loss |
这样问题就愉快的解决了。不过用了三年时间。
再来赌一场吧
三年之后,来自东方的Braylon爵士不服职业赌徒梅累骑士,于是再约骰子大战:
规则和17世纪的那场经典赌局相同,但是我们比的是先出现四次的规定点数。
现在Braylon爵士领先于梅累爵士,目前战况如下:
参赛选手 | 获胜条件 | 当前积分 |
---|---|---|
Braylon爵士 | 先出现四次“6” | 6 6 |
梅累骑士 | 先出现四次“4” | 4 |
突然Braylon爵士觉得见好就收,编了一个借口,需要马上回国。
那么请问来自神秘东方的Braylon爵士和梅累骑士需要怎么分配赌注呢?
正确答案应该是:
Braylon | 梅累 |
---|---|
11 | 5 |
解释:
此时游戏最多再出现最多四次规定点数就可以结束游戏了。
那就好办了,我们看一下:
一 | 二 | 三 | 四 | win/loss |
---|---|---|---|---|
(6) | (6) | (6) | (6) | Braylon |
(6) | (6) | (6) | (4) | Braylon |
(6) | (6) | (4) | (6) | Braylon |
(6) | (4) | (6) | (6) | Braylon |
(4) | (6) | (6) | (6) | Braylon |
(6) | (6) | (4) | (4) | Braylon |
(6) | (4) | (6) | (4) | Braylon |
(6) | (4) | (4) | (6) | Braylon |
(4) | (6) | (6) | (4) | Braylon |
(4) | (6) | (4) | (6) | Braylon |
(4) | (4) | (6) | (6) | Braylon |
(4) | (4) | (4) | (6) | 梅累 |
(4) | (4) | (6) | (4) | 梅累 |
(4) | (6) | (4) | (4) | 梅累 |
(6) | (4) | (4) | (4) | 梅累 |
(4) | (4) | (4) | (4) | 梅累 |
好的,来自神秘东方的Braylon爵士11:5战胜了梅累骑士。
哈哈
大家共勉~~