地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的。而在 PAT 星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”。每个 PAT 星人都必须熟记各位数字的进制表,例如“……0527”就表示最低位是 7 进制数、第 2 位是 2 进制数、第 3 位是 5 进制数、第 4 位是 10 进制数,等等。每一位的进制 d 或者是 0(表示十进制)、或者是 [2,9] 区间内的整数。理论上这个进制表应该包含无穷多位数字,但从实际应用出发,PAT 星人通常只需要记住前 20 位就够用了,以后各位默认为 10 进制。
在这样的数字系统中,即使是简单的加法运算也变得不简单。例如对应进制表“0527”,该如何计算“6203 + 415”呢?我们得首先计算最低位:3 + 5 = 8;因为最低位是 7 进制的,所以我们得到 1 和 1 个进位。第 2 位是:0 + 1 + 1(进位)= 2;因为此位是 2 进制的,所以我们得到 0 和 1 个进位。第 3 位是:2 + 4 + 1(进位)= 7;因为此位是 5 进制的,所以我们得到 2 和 1 个进位。第 4 位是:6 + 1(进位)= 7;因为此位是 10 进制的,所以我们就得到 7。最后我们得到:6203 + 415 = 7201。
输入格式:
输入首先在第一行给出一个 N 位的进制表(0 < N ≤ 20),以回车结束。 随后两行,每行给出一个不超过 N 位的非负的 PAT 数。
输出格式:
在一行中输出两个 PAT 数之和。
输入样例:
30527
06203
415
结尾无空行
输出样例:
7201
结尾无空行
代码:
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
string s, s1, s2, sum;
int carry = 0,j,flag=0;
cin >> s >> s1 >> s2;
reverse(s1.begin(), s1.end());
reverse(s2.begin(), s2.end());
s1.append(s.length() - s1.length(), '0');
s2.append(s.length() - s2.length(), '0');
for (int i = 0; i < s.length(); i++)
{
if(s1[i]=='0'&&s2[i]=='0'&&flag==1)break;
int cnt = s[s.length() - i - 1] == '0' ? 10 : (s[s.length() - i - 1] - '0');
sum+= (s1[i] - '0' + s2[i] - '0' + carry) % cnt + '0';
carry = (s1[i] - '0' + s2[i] - '0' + carry) / cnt;
flag=1;
}
if(carry>0)sum+=(carry+'0');
reverse(sum.begin(),sum.end());
cout<<sum;
return 0;
}