ResNet论文笔记及代码剖析

Reference:

https://zhuanlan.zhihu.com/p/56961832

https://zhuanlan.zhihu.com/p/54289848

源码:

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

 

当网络足够深时,仅仅在后面继续堆叠更多层会带来很多问题:

第一个问题就是梯度爆炸 / 消失(vanishing / exploding gradients),这可以通过BN更好的网络初始化解决;

第二个问题就是退化(degradation)问题,即当网络层数多得饱和了,加更多层进去会导致优化困难、且训练误差和预测误差更大了,注意这里误差更大并不是由过拟合导致的

ResNet特点:

  1. 利用残差结构让网络能够更深、收敛速度更快、同时参数相对之前的模型更少、复杂度更低
  2. 解决深网络退化(梯度爆炸/消失)这个并不是过拟合引起的、难以训练的问题
  3. 适用于多种计算机视觉任务

残差结构:

                                                 

假设输入为 x,有两层全连接层学习到的映射为H(x)  ,也就是说这两层可以渐进(asymptotically)拟合 H(x)。假设 H(x) 与 x 维度相同,那么拟合H(x)与拟合残差函数H(x)-x等价,令残差函数 F(x)=H(x)-x,则原函数变为H(x)=F(x)+x ,于是直接在原网络的基础上加上一个跨层连接,这里的跨层连接也很简单,就是 将x 恒等映射(Identity Mapping)传递过去。

本质也就是不改变目标函数 H(x) ,将网络结构拆成两个分支,一个分支是残差映射 F(x) ,一个分支是恒等映射 x ,于是网络仅需学习残差映射 F(x)即可。

整个残差结构可以形式化定义为y=F(x,{Wi})+x ,这里的 F(x,{Wi}) 指拟合的残差映射,如上图中有两层全连接层,即 F=W2σ(W1x) ,其中σReLU,注意这里为了简洁没有写上bias。当 F维度相同时,可以直接逐元素相加;但如果不同,就必须给x再加一个线性映射,将其映射到一个与 F 维度相同的向量,此时整个残差结构为y=F(x,{Wi})+Ws.xWs就是一个用于维度匹配的矩阵。,但经过后面的实验发现恒等映射更好,维度匹配直接用1 x 1卷积升维或降维即可尤其是在bottleneck结构中

残差结构有效的原因:

  • 自适应深度:网络退化问题就体现了多层网络难以拟合恒等映射这种情况,也就是说H(x)难以拟合x,但使用了残差结构之后,拟合恒等映射变得很容易,直接把网络参数全学习到为0,只留下那个恒等映射的跨层连接即可。于是当网络不需要这么深时,中间的恒等映射就可以多一点,反之就可以少一点。
  • “差分放大器”:假设最优H(x)更接近恒等映射,那么网络更容易发现除恒等映射之外微小的波动
  • 模型集成:整个ResNet类似于多个网络的集成,原因是删除ResNet的部分网络结点不影响整个网络的性能,但VGGNet会崩溃
  • 缓解梯度消失:针对一个残差结构对输入 x 求导就可以知道,由于跨层连接的存在,总梯度F(x)在对x的导数基础上还会加1

Res50、Res101、Res152采用的是被称为bottleneck的残差结构:

                  

1x1卷积有什么作用:

  • 对通道数进行升维和降维(跨通道信息整合),实现了多个特征图的线性组合,同时保持了原有的特征图大小
  • 相比于其他尺寸的卷积核,可以极大地降低运算复杂度
  • 如果使用两个3x3卷积堆叠,只有一个relu,但使用1x1卷积就会有两个relu,引入了更多的非线性映射
  • 1*1卷积的计算量优势:首先看上图右边的bottleneck结构,对于256维的输入特征,参数数目:1x1x256x64+3x3x64x64+1x1x64x256=69632,如果同样的输入输出维度但不使用1x1卷积,而使用两个3x3卷积的话,参数数目为(3x3x256x256)x2=1179648。简单计算下就知道了,使用了1x1卷积的bottleneck将计算量简化为原有的5.9%,收益超高。

残差块的实现:

                                         

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out
  • expansion是残差结构中输出维度是输入维度的多少倍,BasicBlock没有升维,所以expansion = 1
  • 残差结构是在求和之后才经过ReLU层
  • downsample对残差结构的输入进行升维,直接1 x 1卷积再加上BN即可,后面BasicBlock类和Bottleneck类用得到
class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = conv1x1(inplanes, planes)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = conv3x3(planes, planes, stride)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = conv1x1(planes, planes * self.expansion)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out
  • expansion = 4,因为Bottleneck中每个残差结构输出维度都是输入维度的4倍

 


网络结构:

每个网络都包括三个主要部分:输入部分、输出部分和中间卷积部分(中间卷积部分包括如图所示的Stage1到Stage4共计四个stage)。

                                                                         

网络的整体结构:

我们通过调用resnet18( )函数来生成一个具体的model,而resnet18函数则是借助ResNet类来构建网络的。

class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
        super(ResNet, self).__init__()
        self.inplanes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x

# 生成一个res18网络
def resnet18(pretrained=False, **kwargs):
    model = ResNet(BasicBlock, [3, 4, 23, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model

在ResNet类中的forward( )函数规定了网络数据的流向:

(1)数据进入网络后先经过输入部分(conv1, bn1, relu, maxpool);

(2)然后进入中间卷积部分(layer1, layer2, layer3, layer4,这里的layer对应我们之前所说的stage);

(3)最后数据经过一个平均池化和全连接层(avgpool, fc)输出得到结果;

具体来说,resnet101和其他res系列网络的差异主要在于layer1~layer4,其他的部件都是相似的。

  • 在残差结构之前,先对原始224 x 224的图片处理,在经过7 x 7的大卷积核、BN、ReLU、最大池化之后得到56 x 56 x 64的feature map
  • 从layer1、layer2、layer3、layer4的定义可以看出,第一个stage不会减小feature map,其余都会在stage的第一层用步长2的3 x 3卷积进行feature map长和宽减半
  • _make_layer函数中downsample对残差结构的输入进行升维,直接1 x 1卷积再加上BN即可,后面BasicBlock类和Bottleneck类用得到
  • 最后的池化层使用的是自适应平均池化,而非论文中的全局平均池化

输入部分:

所有的ResNet网络输入部分是一个size=7x7, stride=2的大卷积核,以及一个size=3x3, stride=2的最大池化组成,通过这一步,一个224x224的输入图像就会变56x56大小的特征图,极大减少了存储所需大小。

                                                                  

self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

中间卷积部分:

中间卷积部分主要是通过3*3卷积的堆叠来实现信息的提取。上图中的[2, 2, 2, 2]和[3, 4, 23, 3]等则代表了bolck的重复堆叠次数。

输出部分:

通过全局自适应平滑池化,把所有的特征图拉成1*1,对于res18来说,就是1x512x7x7 的输入数据拉成 1x512x1x1,然后接全连接层输出,输出节点个数与预测类别个数一致。

self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)

end

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值