SVM线性分类器--男女生身高体重分类

根据给定的男女生身高体重数据,经过【数据准备、数据转换、标签准备、训练、预测】过程,能够成功预测出给定的任意身高体重应该属于男生还是女生
# 1 思想 分类器 
# 2 如何? 寻求一个最优的超平面 分类
# 3 核:line
# 4 数据:样本 
# 5 训练  SVM_create  train predict
# svm本质 寻求一个最优的超平面 分类
# svm 核: line
# 身高体重 训练 预测 
#男女生身高分类
import cv2
import numpy as np
import matplotlib.pyplot as plt
# svm 对于数据的要求: 所有的数据都要有label
# [155,48] -- 0 女生 [152,53] ---1  男生
# 监督学习 0 负样本 1 正样本

#函数原型:vstack(tup) 参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组
#作用:它是垂直(按照行顺序)的把数组给堆叠起来。


#1.准备数据
woman = np.array([[155,48],[159,50],[164,53],[168,56],[172,60]])    #女生数据
man = np.array([[152,53],[156,55],[160,56],[172,64],[176,65]])      #男生数据

#2.data转换
# data = np.vstack(woman,man)                                       #报错
data = np.vstack((woman,man))                                       #将两个训练样本用行堆积
data = np.array(data,dtype='float32')                               #改成float32类型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值