根据给定的男女生身高体重数据,经过【数据准备、数据转换、标签准备、训练、预测】过程,能够成功预测出给定的任意身高体重应该属于男生还是女生
# 1 思想 分类器
# 2 如何? 寻求一个最优的超平面 分类
# 3 核:line
# 4 数据:样本
# 5 训练 SVM_create train predict
# svm本质 寻求一个最优的超平面 分类
# svm 核: line
# 身高体重 训练 预测
#男女生身高分类
import cv2
import numpy as np
import matplotlib.pyplot as plt
# svm 对于数据的要求: 所有的数据都要有label
# [155,48] -- 0 女生 [152,53] ---1 男生
# 监督学习 0 负样本 1 正样本
#函数原型:vstack(tup) 参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组
#作用:它是垂直(按照行顺序)的把数组给堆叠起来。
#1.准备数据
woman = np.array([[155,48],[159,50],[164,53],[168,56],[172,60]]) #女生数据
man = np.array([[152,53],[156,55],[160,56],[172,64],[176,65]]) #男生数据
#2.data转换
# data = np.vstack(woman,man) #报错
data = np.vstack((woman,man)) #将两个训练样本用行堆积
data = np.array(data,dtype='float32') #改成float32类型