人类海马的时间神经元
文献信息
【阅读的预印本】Reddy, L., Zoefel, B., Possel, J. K., Peters, J. C., Dijksterhuis, D., Poncet, M., van Straaten, E. C., Baayen, J. C., Idema, S., & Self, M. W. (2020). Human hippocampal neurons track moments in a sequence of events. Advance online publication. https://doi.org/10.1101/2020.12.17.423193
【已发表于】Reddy, L., Zoefel, B., Possel, J. K., Peters, J., Dijksterhuis, D. E., Poncet, M., van Straaten, E. C. W., Baayen, J. C., Idema, S., & Self, M. W. (2021). Human hippocampal neurons track moments in a sequence of events. The Journal of Neuroscience, 41(31), 6714–6725. https://doi.org/10.1523/JNEUROSCI.3157-20.2021
Summary:
背景:海马“时间细胞”(表征时间信息的神经元)在啮齿动物中发现,缺乏人类研究。【这种细胞可能与情景记忆(记忆结合)有关,如昨日文献】
方法:让病人学习可预测的图片序列
结果:(1)人脑中时间神经元会在 序列学习阶段 和 trial间的间隔期间 触发,受时间背景调节(2)神经元集群活动也发现了与时间背景相关的结果
结论:时间背景(temporal context)在结构化的时间体验中调节人类海马神经元的放电活动。人类海马神经元可能对情景记忆的时间组织有重要作用。
*注:因有其他任务,只阅读了部分,引言和数据分析完全未阅读。
研究设计
实验 1:序列学习(上A,9病人,共31 sessions)
- 呈现由 5-7 张图像组成的序列(顺序确定,可以预测),每张呈现 1.5 秒(“image period”),间隔0.5 秒(ISI)。
- 要求被试记住图像顺序,每个序列重复 60 次(共10-14min)
- 随机 20% 的图片(image period),序列停止并呈现 探测事件:呈现两张图像。要求被试判断哪张是下一张应该出现的。
*感兴趣 trial:两个连续探测事件之间的序列片段。观察这些片段中海马神经元(记录了441 个神经元)是否 tracked time。
实验 2:具有空白间隔的序列学习(上B,6病人,8 sessions)
程序同实验一,修改如下:
- 序列每重复n次(固定)后,呈现10s黑屏。
- 序列只重复 30 次而不是 60 次。
- 记录了 96 个海马神经元
结果与结论
数据分析包括:
- Time Cell Identification with a General Linear Model(显著性检验:置换检验)
- Control analyses for defining trial periods and time cells
- Statistical test for the number of time cells
- Heatmaps cross-validation and statistical test
- Population pattern analysis
人类海马神经元在序列学习过程中受时间调节(Exp1: SL)
分析方法:逐步一般线性模型 (stepwise GLM) ( Tsao et al., 2018 )——允许识别时间神经元,同时还测量其他实验参数对海马反应的影响
- 用不同的潜在predictor,对每个神经元在 trial序列中每个图像/ISI时期的firing rate 建模:image identity, period type (i.e., image or ISI period), and two time terms。
- 时间神经元:有time term 被选择纳入逐步线性模型(可以显著提高对firing rate预测)的神经元。
结果:
- sequence learning期间:受时间调节的海马神经元数量显著高于随机水平(下图A30%,132 of 441 neurons; permutation test: p<10-6).
- 84 受 linear time term 调节, 40—quadratic time term, and 8—both
- 独立分析和控制分析证实了上述结果的稳健性
- 群体水平上(population level):神经元在连续的时间上有 peak firing(下图B)
- 交叉验证分析证实了3的热图结果的稳健性:temporal preference was reliable in our neuronal population
- 结论:
- 当人类积极尝试记住序列顺序的时候,海马神经元表征了不断变化的时间背景。
人类海马神经元是“多维的”(Exp1: SL)
啮齿动物海马中,时间细胞不仅受时间调节,可以受到各种因素的调节:空间、刺激和时间维度等(Eichenbaum,2014)。
GLM 可以分析不同实验因素(stimulus presence (i.e., image periods vs. ISI periods), image identity, and time in the trial)对海马神经元放电活动的影响(下图B、C、D),发现:
- 完全受time调节的神经元 (92 out of 441, 17.5%)
- 完全受image identity调节的神经元 (56 out of 441, 13.7%),
- 受不同因素共同影响的神经元 (40 neurons, 9.9% for time and another factor; 30 neurons, 8.6% for image identity and another factor).
人类海马神经元内部产生的时间选择性(Exp2: gap)
用 GLM 分析人类海马神经元是否表征了10s间隔期的信息
单个神经元结果:
- 【10s gap】33个神经元显著受时间调节 (34% of cells; 下图A,高于随机水平:permutation test, p<10-6)
- 【sequence-learning】 18个神经元为 time-selective (19% of cells)
- 【both stages】8个神经元编码时间信息
神经元集群结果:
- 【10s gap】time of peak firing occurred at successive moments, and population activity spanned the entire 10s interval (下图B)
- 热图通过交叉验证
- 更早的时间点表征性更强(和啮齿动物研究一致)
结论:
- 在没有视觉输入和任务的情况下,海马神经元的放电活动也受到不断变化的时间环境的调节。
海马种群活动编码时间信息
啮齿动物研究发现:时间信息可以从time-selective 和 non-time-selective 两种神经元的群体水平动态(population-level dynamics)中收集(Tsao et al., 2018)。
Q:时间信息是否也反映在人类海马神经元的种群活动中?
在序列学习阶段对 image period identity 进行了集群模式分析(population pattern analysis):确定海马集群动力学是否反映了每个图像周期的时间特性(例如,区分 “image period 1”和“image period 2”)
(结果省略,如下图所示)
结论:
- 【sequence-learning】hippocampus population dynamics uniquely represented each temporal period
- 【10s gap】Temporal epoch information was also present in population-level dynamics
阅读感想
- 之前了解的神经回放似乎都与海马的这种时间细胞有关,但是前人没有从人类神经元层面上来分析的。这次研究给相关的研究提供了很多底层证据。
- 根据神经回放off-line特征和本研究中的10s gap具有很大的相似性,很好奇gap中时间神经元是否呈现出神经回放特征的依次放电,如果没有,那神经回放的神经元到底是哪些神经元?
- 本次阅读时间较短,但是感觉这三天下来,阅读文献的效率已经比之前搞了很多,用较短的时间也可以大致了解清楚研究的轮廓。