花书学习笔记——杂记

2020.10.28

关于贝叶斯学派和频率学派的问题
每次提到贝叶斯学派和频率学派的不同之处时,人们都会使用这个例子:

给定数据集 X d a t a X_{data} Xdata,如果我们想要确定某一个参数 θ \theta θ,频率学派的做法是 a r g m a x θ { p ( X d a t a ∣ θ ) } \mathop{argmax}\limits_{\theta}\{p(X_{data} | \theta)\} θargmax{p(Xdataθ)},也就是说“认为 θ \theta θ是一个确定的常量,我们只需要找到这个常量的值即可”。而贝叶斯学派的做法则是 a r g m a x θ { p ( θ ∣ X d a t a ) } = a r g m a x θ { p ( X d a t a ∣ θ ) ⋅ p ( θ ) ) } \mathop{argmax}\limits_{\theta}\{p(\theta | X_{data})\} = \mathop{argmax}\limits_{\theta}\{p(X_{data} | \theta) \cdot p(\theta)) \} θargmax{p(θXdata)}=θargmax{p(Xdataθ)p(θ))},也就是说“认为 θ \theta θ是一个随机变量,我们只需要找到这个随机变量的分布,然后取概率密度最大的 θ \theta θ即可”。

但实际上,我个人认为,这里的说法很让人摸不着头脑。单从式子来看,频率学派并没有认为 θ \theta θ是一个确定的常量, p ( X d a t a ∣ θ ) p(X_{data} | \theta) p(Xdataθ)完全可以是 θ \theta θ的函数(并不是 θ \theta θ的概率密度函数,因为并不能保证积分一定为1。事实上,它就是似然函数)。那么这样解释的话,两个学派的唯一区别就出现了:有没有给似然函数乘上一个 θ \theta θ的先验分布 p ( θ ) p(\theta) p(θ)

显然,如果 θ \theta θ在它的定义域(取值合理的集合)内并不服从均匀分布,那么肯定需要在确定 θ \theta θ时,要考虑 θ \theta θ的分布状况。举个例子,如果 θ \theta θ非常非常有可能等于0,那么即使 p ( X d a t a ∣ θ = 0 ) = p ( X d a t a ∣ θ = 1 ) = 0.5 p(X_{data} | \theta=0)=p(X_{data} | \theta=1)=0.5 p(Xdataθ=0)=p(Xdataθ=1)=0.5,我们也应该认为基于当前的观测事实 X d a t a X_{data} Xdata θ \theta θ应该取0而非1,因为它本来就非常非常有可能等于0。

简而言之,在这件事上,最大似然(ML)做法并不是正确的,激进一点,我们可以说ML就是错误的,因为它完全没有考虑 θ \theta θ的分布状况,而MAP才是真正正确、一点错误都没有,而且解释起来也非常顺利的:给定 X d a t a X_{data} Xdata的情况下,最有可能的 θ \theta θ是多少。之所以使用ML,是因为 p ( θ ) p(\theta) p(θ)一般是不可知的,毕竟是先验,需要经验,如果没有经验就只能瞎猜。怎么瞎猜?认为 θ \theta θ服从均匀分布呗,这样MAP就退化为ML了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值