学习笔记前言
应用数学及机器学习基础基础
线性代数
- 标量、向量、矩阵和张量
- 矩阵和向量相乘
- 单位矩阵和逆矩阵
- 线性相关和生成子空间
- 范数
- 特殊类型的矩阵和向量
- 特征分解
- 奇异值分解
- Moore-Penrose 伪逆
- 迹运算
- 行列式
https://ice-melt.blog.csdn.net/article/details/87071168
eg:主成分分析
- PCA公式推导( l = 1 l=1 l=1的情况)
- (
l
>
1
l\gt 1
l>1的情况)
https://ice-melt.blog.csdn.net/article/details/87199037
概率
- 为什么要使用概率
- 随机变量
- 概率分布
- 边缘概率
- 条件概率
- 条件概率的链式法则
- 独立性和条件独立性
- 期望、方差和协方差
https://ice-melt.blog.csdn.net/article/details/87630630
常用的概率分布
- Bernoulli 分布
- Multinoulli 分布
- 高斯分布
- 指数分布和 Laplace 分布
- Dirac 分布和经验分布
- 分布的混合
https://ice-melt.blog.csdn.net/article/details/87698664
贝叶斯规划
连续型随机变量的技术细节
- 零测度
- 几乎处处
- jacobian matrix
https://ice-melt.blog.csdn.net/article/details/87933091
信息论
学到哪里更新哪里
持续更新。。。。