动态规划:给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种

一、问题描述

不同的二叉搜索树
给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

来源:力扣(LeetCode)

二、解法

其实接触过动态规划算法的朋友可能都会很自然地联想到动态规划算法。

我们用G(i,j)来表示从数字i到数字j的不同二叉树的数目,但很容易发现,只要j-i相同,无论是从1到3,还是3到5,它们的不同的二叉树数目是一样的,我们不妨将该记号简化为G(n),其中n=j-i+1。

所以问题的求解就转化为G(n)。

显然,对于一个以j为根节点的不同的二叉树数目 = 小于j的数组成的不同二叉树数量*大于j的数组成的不同二叉树数量,用公式表达为 G ( ( j − 1 ) − 1 + 1 ) ∗ G ( n − ( j + 1 ) + 1 ) G((j-1)-1 +1)*G(n-(j+1)+1) G((j1)1+1)G(n(j+1)+1)

而G(n)其实就是等于分别以1,…,n为根节点得到的不同二叉树的数目的总和。

也就是 G ( n ) = G ( 0 ) ∗ G ( n − 1 ) + G ( 1 ) G ( n − 2 ) + G ( n − 1 ) ∗ G ( 0 ) G(n)=G(0)*G(n-1) + G(1)G(n-2)+G(n-1)*G(0) G(n)=G(0)G(n1)+G(1)G(n2)+G(n1)G(0)

根据这条公式(称之为状态转移公式),我们知道要想求解G(n),必须先求解所有的G(0)到G(n-1)

而G(0)事实上是无意义的,为了保持等式不为零,我们将其设为1.

代码如下所示:

class Solution {
public:
    int numTrees(int n) {
        int G[n+1];
        G[0] = 1;
        G[1] = 1;

        for (int i = 2; i <= n; ++i) {
            G[i]=0;
            for (int j = 1; j <= i; ++j) {
                G[i] += G[j - 1]*G[i - j];
         }
        }
        return G[n];
    }
};

三、总结

1.对于经典的动态规划问题,一般都会用到分治或者减治的思想,先把子问题或者说局部问题的工作做了,存起来,再根据状态转移公式求得目标问题的解。

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值