Label Smoothing介绍及其代码实现

标签平滑是一种正则化技术,用于分类任务,通过修改数据集标签减少模型过拟合。其基本思想是为标签引入扰动,防止模型过于自信。在代码实现中,通常在损失函数计算时应用,如提供的PyTorch版本示例所示,该实现方式与标准的交叉熵损失函数类似。实验表明,标签平滑能提高模型的泛化能力。

一、标签平滑(Label Smoothing)介绍

标签平滑(Label Smoothing)的原理其实很简单,它大部分的用处用一句话总结就是:

修改数据集的标签来增加扰动,避免模型的判断过于自信从而陷入过拟合

标签平滑是一种正则化的技术,常常用在分类任务中。它的具体做法就是为数据集的标签增加扰动,它的具体做法如下所示(以K分类任务为例)。

对于K分类来说,假设一个样本 x x x属于第2类,那么实际上用来训练模型(或者说用来计算损失函数)的标签是一个独热编码,具体为[0,0,1,0], 即在位置为2处数值为1(代表属于第2类(从第0类开始计数))。此时标签平滑的具体步骤为:

  1. 定义一个小的扰动常量 ϵ \epsilon ϵ
  2. 将独热编码的标签中的0替换为 ϵ / K \epsilon/K ϵ/K
  3. 将独热编码的标签中的1替换为 1 − e p s i l o n / K 1-epsilon/K 1epsilon/K

由于在现实数据集中,并不是所

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值