一、标签平滑(Label Smoothing)介绍
标签平滑(Label Smoothing)的原理其实很简单,它大部分的用处用一句话总结就是:
修改数据集的标签来增加扰动,避免模型的判断过于自信从而陷入过拟合
标签平滑是一种正则化的技术,常常用在分类任务中。它的具体做法就是为数据集的标签增加扰动,它的具体做法如下所示(以K分类任务为例)。
对于K分类来说,假设一个样本 x x x属于第2类,那么实际上用来训练模型(或者说用来计算损失函数)的标签是一个独热编码,具体为[0,0,1,0], 即在位置为2处数值为1(代表属于第2类(从第0类开始计数))。此时标签平滑的具体步骤为:
- 定义一个小的扰动常量 ϵ \epsilon ϵ
- 将独热编码的标签中的0替换为 ϵ / K \epsilon/K ϵ/K
- 将独热编码的标签中的1替换为 1 − e p s i l o n / K 1-epsilon/K 1−epsilon/K
由于在现实数据集中,并不是所

标签平滑是一种正则化技术,用于分类任务,通过修改数据集标签减少模型过拟合。其基本思想是为标签引入扰动,防止模型过于自信。在代码实现中,通常在损失函数计算时应用,如提供的PyTorch版本示例所示,该实现方式与标准的交叉熵损失函数类似。实验表明,标签平滑能提高模型的泛化能力。
最低0.47元/天 解锁文章
3436

被折叠的 条评论
为什么被折叠?



