分解质因数在判断两个数能否整除的问题中经常遇到,下面通过一个题目来引出分解质因数的模板
口算训练
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others)Total Submission(s): 402 Accepted Submission(s): 81
Problem Description
小Q非常喜欢数学,但是他的口算能力非常弱。因此他找到了小T,给了小T一个长度为
n的正整数序列
a1,a2,...,an,要求小T抛出
m个问题以训练他的口算能力。
每个问题给出三个正整数 l,r,d,小Q需要通过口算快速判断 al×al+1×...×ar−1×ar是不是 d的倍数。
小Q迅速地回答了出来,但是小T并不知道正确答案是什么,请写一个程序帮助小T计算这些问题的正确答案。
每个问题给出三个正整数 l,r,d,小Q需要通过口算快速判断 al×al+1×...×ar−1×ar是不是 d的倍数。
小Q迅速地回答了出来,但是小T并不知道正确答案是什么,请写一个程序帮助小T计算这些问题的正确答案。
Input
第一行包含一个正整数
T(1≤T≤10),表示测试数据的组数。
每组数据第一行包含两个正整数 n,m(1≤n,m≤100000),分别表示序列长度以及问题个数。
第二行包含 n个正整数 a1,a2,...,an(1≤ai≤100000),表示序列中的每个数。
接下来 m行,每行三个正整数 l,r,d(1≤l≤r≤n,1≤d≤100000),表示每个问题。
每组数据第一行包含两个正整数 n,m(1≤n,m≤100000),分别表示序列长度以及问题个数。
第二行包含 n个正整数 a1,a2,...,an(1≤ai≤100000),表示序列中的每个数。
接下来 m行,每行三个正整数 l,r,d(1≤l≤r≤n,1≤d≤100000),表示每个问题。
Output
对于每个问题输出一行,若是倍数,输出Yes,否则输出No。
Sample Input
1 5 4 6 4 7 2 5 1 2 24 1 3 18 2 5 17 3 5 35
Sample Output
Yes No No Yes
Source
题解:我们可以对数组a的每一个元素都进行质因数分解,开一个容器来存储这些质因数,并且记录这些质因数的来源,最后我们再分解d,如果区间[l,r]中的质因数个数满足d的质因数个数,那么说明,可以进行整除,否则不能。
下面直接给出代码:
#include <iostream>
#include<math.h>
#include<bits/stdc++.h>
#include<vector>
using namespace std;
#define ll long long
const int maxn=1e5+5;
const int mod=1e5;
vector<int> a[maxn];//
int query(int l , int r , int x)//查找l到r区间某个因数的个数,可以直接画个图来理解
{//因为加入的顺序是从i=0到i=n所以是有序的,可以进行二分查找
return upper_bound( a[x].begin() ,a[x].end() , r) -lower_bound( a[x].begin() , a[x].end() , l);//因为是按顺序记录的i,所以可以找【l,r】这个区间里x的个数
}
int solve(int l , int r , int d)
{
for(int i = 2 ; i * i <= d ; i++ )
{
if ( d % i == 0 )
{
int cnt = 0 ;
while (d % i == 0 )
{
cnt++ ;//记录这样的质因数需要多少个
d /= i ;
}
if (cnt > query(l, r, i))
return 0;//如果i的个数小于应该有的个数,那么就不能整除d,返回0
}
}
if (d > 1)
{
if (query(l, r, d) < 1)
return 0;//同上,但是d是被除后,所剩下的质数,如果【l,r】区间里没有d那么就返回0
}
return 1;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;scanf("%d %d",&n,&m);
for (int i = 0; i < maxn; i++) a[i].clear();
for (int i = 1, x; i <= n; i++)
{
scanf("%d", &x); //记录质因数有2,3,,。。。这些的数在哪里
for (int j = 2; j * j <= x; j++)
{
while (x % j == 0)
{
x/=j;
//cout<<j<<endl;
a[j].push_back(i);//i这个数可以分解成j,用j记录i
}
}
if (x > 1) a[x].push_back(i);
}
while (m--)
{
int l,r,d;
scanf("%d %d %d", &l, &r, &d);
if(solve(l, r, d))
printf("Yes\n");
else
printf("No\n");
}
}
return 0;
}
分解质因数的模板如下:
vector<int> p;
void solve(ll n)
{
p.clear();
for(int i=2;i*i<=n;i++)
{
if(n%i==0)
{
p.push_back(i);
while(n%i==0)
{
n/=i;
}
}
}
if(n>1)
{
p.push_back(n);//这一步不可以去掉
}
}